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Introduction

Atmospheric dynamics is very close to ocean dynamics,
density of the atmosphere is 1000 times smaller than
water

Atmosphere dynamics is in essence also the Navier
Stokes equations for a thin layer of gas on a rotating
sphere

Transport of energy is completely different for oceanic
and atmospheric processes

Time and length scales are completely different for the
ocean and the atmosphere,

You should be familiar with the difference between
meteorology and climatology

Human intervention is visible in the ocean and
atmosphere, actually, both issues are coupled.



Hydrostatic equilibrium

3 @ dp = -p(2)g(2)dz

|ldeal gas law

P=N*k*T — P(z) = p(Z)?()z)k
m\z

P: pressure, p: density, g:gravity, T:temperature,
z: altitude, m: molecular mass, k: Bolzmann constant Source: Ch4 PS book



Consequence

gp=-"2)8E) by
T(2)k

P(z) = P(O)e_{ e

kT(r)

m(r)g(r)

H(r)=

On Earth:
T : 288 Kelvin
H: 8.5 km

Source: Ch4 PS book



Thermal wind equations

Earlier in the tides lectures we found:

Du=_lap+2£2sin¢v—2£200s¢w+Fx
Dt p ox
Dv=_18p—29sin¢u+Fy

Dt p dy

Dw -1dp

+2Qcosu—-o+ F
Dt p oz g+l

For the discussion that follows we simplify the equations to:

1 dp 1 dp
———=fw ———=—fu ——— ==
/v p dy /o poz ©

where uy and v, are geostrophic velocities: Source: tides lectures



Thermal wind equations

We have :

— fv =-9d/ox
and

fu=-0®/dy

where @ 1s called the geopotential which comes

from the hydrostatic equation

P
dd = —d— =v dP

P
where v 1s called the specific volume, for this

there 1s a model that depends on pressure, salinity

(only in oceanography) and temperature
Source: Gill book



The geopotential height H or Z,

» The geopotential ¢ is describes the
position dependent energy per unit mass.

* Position dependent energy is also called
the potential energy in mechanics

H
qj = fg(gp,)\,,z)dz Formal definition
0

/. = ﬂ Mean sea level gravity approximation
8

80



In oceanography and meteorology there is a so - called
equation of state which describes the physical properties
of water or air :

0 =v(S,T,p) = v (Sy,T}sp,) AT var.':v.‘u'fl T

MAs v 53l e
so that :

P
-D = f O dp
0
And therefore we can generate equations like :

H{D(p,) - P(p,)}

_f{Vg(pl)-vg(pz)} = =
HD(p,)-D
+f{ug(p1)-ug(p2)} = { (pl)ay (P,)}

In meteorology :

p2
® -®, = [ p"'RT dp = RT In(p,/ p,)
pl Source: Gill book



500 hPa + wind 4-feb-2009 152

OFS: Wind 500hPa [m/s] & Geopot 500hPa [gpdm] valld Wed, 04FEBZ009 152
[2009020406]4+8h —= MNorth Atlantic Ocean =—




Jet Stream

Flight times (KLM):
AMS->SFO: 11h 15m
SFO->AMS: 10h 35m
Distance 8808 km
Speed1 =783 km/h
Speed2 = 832 km/h
Delta = 49 km/h

Extreme jet stream speeds
are much larger (>200 km/h)

Source: www.fas.org



Summary thermal wind equation

* By a field experiment with XBTs or radiosondes
you can always compute VO® which allows you to
derive u and v profiles for the geostrophic wind
speed

* In oceanography there is a level of no motion
discussion, the deep ocean is motionless

* |n meteorology you always have the ground
level as a reference



Hadley cells
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Radiative equilibrium (holds for any object in space)

Input : Output :
F - (1—Ab)L@ER2 F _=4nR’coT’
T un T : temperature

L,, : Luminosity of the Sun o : Stefan - Boltzmann cst

I, - Earth Sun distance ¢ : emissivity of the Earth

R : radius Earth

A, : Bond Albedo % Yf
1/

T = Fo, 1-A4,) 263K on Earth
eq 2

it is too low
ry, 4eo ( )



Source: UCAR
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Thermal structure of the atmosphere

* The thermal structure of the atmosphere (dT/dz) is
determined by sources and transport of heat energy.

« Major sources:

— Sunlight is the dominant source, it is absorbed at the surface,
the atmosphere where it is less opaque (optical depth), or
dust in the atmosphere

— The planet’s surface and dust are infrared radiators

 Minor sources:

— Internal heat sources on the planet (Think of volcanoes and
geysers, or the large gaseous planets)

— Charged particle precipitation in the aural zones and
thermospheric winds that heat the entire planet

— Joule heating from electric currents in the ionosphere

Source: Chapter 4.2 PS book



Energy transport

« Conduction: This only happens in the upper
thermosphere and the exosphere in the form of
collisions between particles.

« Convection: The troposphere is governed by
convection, dry adiabatic lapse rate, clouds, etc.

« Radiation: When energy is transported by
absorption and re-emission of radiation. A good
approximation is the radiative equilibrium of a
planet, but more fundamentally you have to
solve the radiative transfer problem.




Dry adiabatic lapse rate

ar __r-1lgl@m)m(z)
dz 8@)fe, = y k
g(z) : gravity

c, - specific heat without changing pressure

c, : specific heat without changing volume
y=c,/c
y 1s usually 5/3, 7/5 or 4/3 depending on the gas



What is more efficient?

For an atmosphere that is marginally unstable to
convection we can define (dT/dz) by the dry adiabatic
lapse rate equation

An atmosphere is said to be super-adiabatic and
convection causes dT/dz to be greater than the dry
adiabatic lapse rate, this happens in the lower
troposphere

When the optical depth is not large and not too small
energy is transported by radiation, this happens above
the troposphere

Upper part thermosphere: conduction.

Source PS book ch 3+4



Radiative transfer problem

E =hv : energyof aphoton $ —~ 9%
_ E . 5
p =—s5 : momentum of a photon (/’
C
dE =1 cosOdtdAdQ dv dA

[ : specificintensity

I, =B (T) : specificintensity of a black body
dl, = j pds—-1 o, pds

J, = J, (scattering) + j (thermal excitation)

¢, :mass extinction = mass absorbtion + mass scattering



John Tyndall's experiment 1859




100
a0
60

40
20

Total

100

50

_
1

100

50

100
578C K

A

50

0

a1l
0.1 1.0

Wavelength {microns)

Solar radiation coming in

A | 111
10.0 100.0

Earth thermal radiation
going out



Infrared spectrum seen by Nimbus IV satellite
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Infrared spectrum computed with COART code
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Outgoing long-wave forcing as a function of height

100 1 1 1 1 I I

90 .

80 | .

0 .

60 | 2

50 + .

height

40+ -
30 f
0k Tropopause

10F

T —_— L

D 1 1 1 |
160 180 200 220 240 260 280 300
QOutgoing flux W/m? "normal CO2"




height km

Effect on outgoing long-wave forcing wrt height as a result of
doubling the present day carbon dioxide concentrations
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Earth’s global radiation budget

Reflected Solar Incoming 235 Outgoing

107\ Radiation : 242 Solar Longwave
107 Wim* Radiation Radiation

, 342 Wim? 235 Wim?

Reflected by Clouds
Aerosol and

Almosphere
/7
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Reflected by
Surface

Thermals Evapo-
transpiration

Source: Kiehl and Trenberth [1997]



Earth’s radiation balance vs latitude
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Human activities

Natural
processes

Radiative forcing of climate between 1750 and 2005
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Climate change

* The hockeystick curve(s)
— CO, and temperature last 200 years
— CO, and temperature last 500K years
— Climate sensitivity (exercise)

* Changes in the cryosphere
— GRACE, altimetry, INSAR

* Projected Sea level change
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Carbon Dioxide (ppm)

Changes in GHGs from ice core and modern data
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Global Land-Ocean Temperature Index

.6
]

~ 4 —s— Annual Mean
L - — 5-year Mean
i
<
= 2
= l
<
b
5 .0 |
[
2
5 -.2
>

-4

18830 1900 1920 1940 1960 1980 2000

Source: GISS



Global and continental temperature change
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Year Year
- models using only nawural forangs

Source: IPCC

models using both natural and antropogenic forangs



Temperature anomaly (°C wrt 1961-1990)
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Paleo Climate
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Temperature
Change (°C)
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Consequence of global warming

* Sea level change

* De-glaciation

* Precipitation pattern changes
* Biodiversity changes

* Future warming



Sea level
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Climate
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Local Trends (Gt/yr)

basin <2000 m > 2000 m
1 12+ 4 -1+4
2 6+4 19+6
3 25 +5 10 £5
4 -49 + 4 -/ £3
5 51 +5 6£b
6 13 +5 11 +£5
7 14 + 3 2+5
8 16 + 4 13 +5
Total -186 £ 19 / +18

Overall Total:-179+/-25 Gt/yr



Regional mass loss
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Annual precipitation trends: 1900 to 2000
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Biodiversity, as ratio of species
abundance before human impacts
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Global surface warming (°C)
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Exercises

Why is it necessary to distinguish between a longwave
and shortware band when we discuss the Earth’s
radiation balance?

How could you tell whether one Greenhouse gas is more
effective than another?

Explain why a satellite radiometer observes a peak
Inside all absorption gaps in the IR longwave band.

Explain at least two independent techniques to
reconstruct the mean atmospheric temperature up to
5000 years ago.

How large is the contribution of Greenland’s ice sheet
ablation signal to the global mean sea level.

Explain how INSar over glacier systems helps to
estimate a mass balance of that ice sheet.



