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Chapter 1

Introduction

The variation in gravitational pull exerted on the Earth by the motion of Sun and Moon
and the rotation of the Earth is responsible for long waves in the Earth’s ocean which we
call ”tides”. On most places on Earth we experienced tides as a twice daily phenomenon
where water levels vary between a couple of decimeters to a few meters. In some bays
a funneling effect takes place, and water levels change up to 10 meter. Tides are the
longest waves known in oceanography; due to their periodicity they can be predicted well
ahead in time. Tides will not only play a role in modeling the periodic rise and fall of sea
level caused by lunar and solar forcing. There are also other phenomena that are directly
related to the forcing by Sun and Moon.

In chapter 2 we introduce the concept of a tide generating potential whose gradient is
responsible for tidal accelerations causing the “solid Earth” and the oceans to deform. In
order to get a more complete overview of the topic one must be aware that tidal signals in
geophysical measurements are always more complex than the relatively simple formulation
of the tide generating potential.

Deformation of the entire Earth due to an elastic response, also referred as solid Earth
tides and related issues, is discussed in chapter 3. A good approximation of the solid
Earth tide response is obtained by an elastic deformation theory. The consequence of
this theory is that solid Earth tides are well described by equilibrium tides multiplied by
appropriate scaling constants in the form of Love numbers that are defined by spherical
harmonic degree.

Ocean tides show a different behavior than Solid Earth Tides. Hydrodynamic equations
that describe the relation between forcing, currents and water levels are discussed in
chapter 4. This shows that the response of deep ocean tides is linear, meaning that tidal
motions in the deep ocean take place at frequencies that are astronomically determined,
but that the amplitudes and phases of the ocean tide follow from a convolution of an
admittance function and the tide generating potential. This is not anymore true near the
coast where non-linear tides occur at frequencies that are multiples of linear combinations
of astronomical tidal frequencies.

Chapter 5 deals with two well known data analysis techniques which are the harmonic
analysis method and the response method for determining amplitude and phase at selected
tidal frequencies.

Chapter 6 introduces the theory of load tides, which are indirectly caused by ocean
tides. Load tides are a significant secondary effect where the lithosphere experiences
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motions at tidal frequencies with amplitudes of the order of 5 to 50 mm. Mathematical
modelling of load tides is handled by a convolution on the sphere involving Green functions
that in turn depend on material properties of the lithosphere, and the distribution of ocean
tides that rest on (i.e. load) the lithosphere.

Up to 1990 most global ocean tide models depended on hydrodynamical modelling.
The outcome of these models was tuned to obtain solutions that resemble tidal constants
observed at a few hunderd points. A revolution was the availability of satellites equipped
with radar altimeters that enable estimation of many more tidal constants. This concept
is explained in chapter 7 where it is shown that radar observations of the sea drastically
improved the accuracy of deep ocean tide models. One of the consequences is that new
ocean tide models result in a better understanding of tidal dissipation mechanisms.

Chapter 8 is an optional chapter, it provides background information with regard
to the global rate of energy dissipation in the tides. It discusses the consequences on
Earth rotation, in literature referred to as tidal braking. Furthermore it explains that
the conversion of mechanical tidal energy into other forms of energy can be explained
by the difference between a term describing the gravitational work and a second term
describing the power flux divergence. The inferred dissipation estimates do provide hints
on the nature of the conversion process, for instance, whether the dissipations are related
to bottom friction or conversion of barotropic to internal tides which in turn cause mixing
of surface waters and the abyssal ocean.

Tidal research involves a wide variety of subjects and not all material is incorporated in
these lectures. These notes do for instance not deal with numerical techniques for solving
the Laplace tidal equations. In addition I assume a basic knowledge level in the sense that
the reader is reasonably familiar with Newton’s laws, celestrial mechanics, linear algebra,
analysis, Fourier series, and partial differential equations.

Since the first version of these lecuture notes appeared in March 2004 numerous small
corrections were included. Appendix A was added to summarize some well known prop-
erties of Legendre functions, spherical harmonics and properties of convolution integrals
on the sphere. Appendix B explains a method for computing a table of tidal harmonics.

Ernst J.O. Schrama,
Associate Professor Space Geodesy and Geodynamics
Faculty of Aerospace, TU Delft, Netherlands
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Chapter 2

Tide generation

2.1 Introduction

It was Newton’s Principia (1687) suggesting that the difference between the gravitational
attraction of the Moon (and the Sun) on the Earth and the Earth’s center are respon-
sible for tides, see also figure 2.1. According to this definition of astronomical tides the
corresponding acceleration ∆f becomes:

∆f = fPM − fEM (2.1)

whereby fPM and fEM are caused by the gravitational attraction of the Moon M. Im-
plementation of eq. (2.1) is as straightforward as computing the lunar ephemeris and
evaluating Newton’s gravitational law. In practical computations this equation is not ap-
plied because it is more convenient to involve a tide generating potential U whose gradient
∇U corresponds to ∆f in eq. (2.1).

2.2 Tide generating potential

To derive Ua we start with a Taylor series of U = µM/r developed at point E in figure 2.1
where µM is the Moon’s gravitational constant and r the radius of a vector originating at
point M . The first-order approximation of this Taylor series is:

∆f =
µM

r3EM




2 0 0
0 −1 0
0 0 −1







∆x1

∆x2

∆x3


 (2.2)

where the vector (∆x1,∆x2,∆x3)
T is originating at point E and whereby x1 is running

from E to M. The proof of equation (2.2) is explained in the following.

2.2.1 Proof

Let
U =

µ

r
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E

Ψ

P fPM

fEM

rE

r
PM

rEM
M

fEM

∆f

Figure 2.1: The external gravitational force is separated in two components, namely fEM

and fPM whose difference is according to Newton’s principia (1687) responsible for the
tidal force ∆f . Knowledge of the Earth’s radius rE, the Earth-Moon distance rEM and
the angle ψ is required to compute a tide generating potential Ua whose gradient ∇Ua

corresponds to a tidal acceleration vector ∆f .

and
r = (x2

1 + x2
2 + x2

3)
1/2

We find that:
∂U

∂xi
= − µ

r3
xi, i = 1, · · · , 3

and that:
∂2U

∂xi∂xj
= 3

µ

r5
xixj − δij

µ

r3

where δij is the Kronecker symbol. Here Ua originates from point M and we obtain ∆f
by linearizing at:

x1 = r, x2 = x3 = 0

so that:

∂2U

∂xi∂xj

∣∣∣∣∣
x=(r,0,0)T

=
µ

r3




2 0 0
0 −1 0
0 0 −1




A first-order approximation of ∆f is ∇U |(r,0,0)T at x1 = r, x2 = x3 = 0:

∇U |(r,0,0)T =
∂2U

∂xi∂xj

∣∣∣∣∣
(r,0,0)T

∆xj =
µ

r3




2 0 0
0 −1 0
0 0 −1







∆x1

∆x2

∆x3




where ∆xi for i = 1, · · · , 3 are small displacements at the linearization point E.
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2.2.2 Work integral

We continue with equation (2.2) to derive the tide generating potential Ua by evaluation
of the work integral:

Ua =

∫ rE

s=0
(∆f , n) ds (2.3)

under the assumption that Ua is evaluated on a sphere with radius rE .

Why a work integral?

A work integral like in eq (2.3) obtains the required amount of Joules to move from A to B
through a vector field. An example is ”cycling against the wind” which often happens in
the Dutch climate. The cyclist goes along a certain path and n is the local unit vector in
an arbitrary coordinate system. The wind exerts a force ∆f , and when each infinitesimal
part ds is multiplied by the projection of the wind force on n we obtain the required (or
provided) work by the wind. For potential problems we deal with a similar situation,
except that the force must be replaced by its mass-free equivalent called acceleration and
where the acceleration is caused by a gravity effect. In this case the outcome of the
work integral yields potential energy difference per mass, which is referred to as potential
difference.

Evaluating the work integral

In our case n dictates the direction. Keeping in mind the situation depicted in figure 2.1
a logical choice is:

n =




cosψ
sinψ

0


 (2.4)

and 


∆x1

∆x2

∆x3


 =



s cosψ
s sinψ

0


 (2.5)

so that (∆f, n) becomes:

(∆f, n) =
µM

r3EM




2s cosψ
−s sinψ

0


 .




cosψ
sinψ

0




=
sµM

r3EM

{
2 cos2 ψ − sin2 ψ

}

=
sµM

r3EM

{
3 cos2 ψ − 1

}

It follows that:

Ua =

∫ rE

s=0

sµM

r3EM

{
3 cos2 ψ − 1

}
.ds

=
µMr

2
E

r3EM

{
3

2
cos2 ψ − 1

2

}
(2.6)
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=
µMr

2
E

r3EM

P2(cosψ)

which is the first term in the Taylor series where P2(cosψ) is the Legendre function of de-
gree 2. More details on the definition of these special functions are provided in appendix A.
But there are more terms, essentially because eq. (2.6) is of first-order. Another example
is:

∆fi =
∂3U

∂xi∂xj∂xk

∆xj∆xk

3!
(2.7)

where U = µ/r for i, j, k = 1, · · · , 3. Without further proof we mention that the second
term in the series derived from eq. (2.7) becomes:

Ua
n=3 =

µMr
3
E

r4EM

P3(cosψ) (2.8)

By induction one can show that:

Ua =
µM

rEM

∞∑

n=2

(
rE
rEM

)n

Pn(cosψ) (2.9)

represents the full series describing the tide generating potential Ua. In case of the Earth-
Moon system rE ≈ 1

60rEM so that rapid convergence of eq. (2.9) is ensured. In practice it
doesn’t make sense to continue the summation in eq. (2.9) beyond n = 3.

Equilibrium tides

Theoretically seen eq. (2.9) can be used to compute tidal heights at the surface of the
Earth. In a simplified case one could compute the tidal height η as η = g−1Ua where g is
the acceleration of the Earth’s gravity field. Also this statement is nothing more than to
evaluate the work integral

∫ η

0
(f, n) ds =

∫ η

0
g ds = gη = Ua

assuming that g is constant. Tides predicted in this way are called equilibrium tides,
they are usually associated with Bernoilli rather than Newton who published the subject
in the Philosophae Naturalis Principea Mathematica, see also [5]. The equilibrium tide
theory assumes that ocean tides propagates with the same speed as celestrial bodies move
relative to the Earth. In reality this is not the case, later we will show that the ocean
tide propagate at a speed that can be approximated by

√
g.H where g is the gravitational

acceleration and H the local depth of the ocean. It turns out that our oceans are not
deep enough to allow diurnal and semi-diurnal tides to remain in equilibrium. Imagine a
diurnal wave at the equator, its wavespeed would be equal to 40 × 106/(24 × 3600) = 463
m/s. This corresponds to an ocean with a depth of 21.5 km which exceeds an average
depth of about 3 to 5 km so that equilibrium tides don’t occur.
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2.2.3 Example

In the following example we will compute g−1 (µM/rEM ) (rE/rEM )n, ie. the maximum
vertical displacement caused by the tide generating potential caused by Sun and Moon.
Reference values used in equation (2.9) are (S:Sun, M:Moon):

µM ≈ 4.90 × 1012 m3s−2 rEM ≈ 60 × rE
µS ≈ 1.33 × 1020 m3s−2 rES ≈ 1.5 × 1011 m
rE ≈ 6.40 × 106 m g ≈ 9.81 ms−2

The results are shown in table 2.1.

n = 2 n = 3

Moon 36.2 0.603
Sun 16.5 0.703 × 10−3

Table 2.1: Displacements caused by the tide generating potential of Sun and Moon, all
values are shown in centimeters.

2.2.4 Some remarks

At the moment we can draw the following conclusions from eq. (2.9):

• The P2(cosψ) term in the equation (2.9) resembles an ellipsoid with its main bulge
pointing towards the astronomical body causing the tide. This is the main tidal
effect which is, if caused by the Moon, at least 60 times larger than the n = 3 term
in equation (2.9).

• Sun and Moon are the largest contributors, tidal effects of other bodies in the solar
system can be ignored.

• Ua is unrelated to the Earth’s gravity field. Also it is unrelated to the acceleration
experienced by the Earth revolving around the Sun. Unfortunately there exist many
confusing popular science explanations on this subject.

• The result of equation (2.9) is that astronomical tides seem to occur at a rate of 2
highs and 2 lows per day. The reason is of course Earth rotation since the Moon and
Sun only move by respectively ≈ 13◦ and ≈ 1◦ per day compared to the 359.02◦ per
day caused by the Earth’s spin rate.

• Astronomical tides are too simple to explain what is really going on in nature, more
on this issue will be explained other chapters.

2.3 Darwin symbols and Doodson numbers

Since equation (2.9) mainly depends on the astronomical positions of Sun and Moon
it is not really suitable for applications where the tidal potential is required. A more
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practical approach was developed by Darwin (1883), for references see [5], who invented
the harmonic method of tidal analysis and prediction. Darwin’s classification scheme
assigns ”letter-digit combinations”, also known as Darwin symbols, to certain main lines
in a spectrum of tidal lines. The M2 symbol is a typical example; it symbolizes the most
energetic tide caused by the Moon at a twice daily frequency. Later in 1921, Doodson
calculated an extensive table of spectral lines which can be linked to the original Darwin
symbols. With the advent of computers in the seventies, Cartwright and Edden (1973),
with a reference to Cartwright and Tayler (1971) (hereafter CTE) for certain details,
computed new tables to verify the earlier work of Doodson. (More detailed references
can be found in [4] and in [5]). The tidal lines in these tables are identified by means of
so-called Doodson numbers D which are “computed” in the following way:

D = k1(5 + k2)(5 + k3).(5 + k4)(5 + k5)(5 + k6) (2.10)

where each k1, ..., k6 is an array of small integers, corresponding with the description shown
in table 2.2, where 5′s are added to obtain a positive number. For ki = 5 where i > 0 one
uses an X and for ki = 6 where i > 0 one uses an E. In principle there exist infinitely
many Doodson numbers although in practice only a few hundred lines remain. To simplify
the discussion we divide the table in several parts: a) All tidal lines with equal k1, which
is the same as the order m in spherical harmonics, are said to form species. Tidal species
indicated with m = 0, 1, 2 correspond respectively to long period, daily and twice-daily
effects, b) All tidal lines with equal k1 and k2 terms are said to form groups, c) And finally
all lines with equal k1, k2 and k3 terms are said to form constituents. In reality it is not
necessary to go any further than the constituent level so that a year worth of tide gauge
data can be used to define amplitude and phase of a constituent. In order to properly
define the amplitude and phase of a constituent we need to define nodal modulation factors
which will be explained in chapter 5.

2.3.1 Tidal harmonic coefficients

An example of a table with tidal harmonics is shown in appendix B. Tables B.1 and B.2
contain tidal harmonic coefficients computed under the assumption that accurate planetary
ephemeris are available. In reality these planetary ephemeris are provided in the form
Chebyshev polynomial coefficients contained in the files provided by for instance the Jet
Propulsion Laboratory in Pasadena California USA.

To obtain the tidal harmonics we rely on a method whereby the Doodson numbers are
prescribed rather than that they are selected by filtering techniques as in CTE. We recall
that the tide generating potential U can be written in the following form:

Ua =
µM

rem

∑

n=2,3

(
re
rem

)n

Pn(cosψ) (2.11)

The first step in realizing the conversion of equation (2.11) is to apply the addition theorem
on the Pn(cosψ) functions which results in the following formulation:

Ua =
∑

n=2,3

n∑

m=0

1∑

a=0

µm (re/rem)n

(2n + 1)rem
Y nma(θm, λm)Y nma(θp, λp) (2.12)
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For details see appendix A. Eq. (2.12) should now be related to the CTE equation for the
tide generating potential:

Ua = g
3∑

n=2

n∑

m=0

cnm(λp, t)fnmPnm(cos θp) (2.13)

where g = µ/R2
e and for (n+m) even:

cnm(λp, t) =
∑

v

H(v) × [cos(Xv) cos(mλp) − sin(Xv) sin(mλp)] (2.14)

while for (n+m) odd:

cnm(λp, t) =
∑

v

H(v) × [sin(Xv) cos(mλp) + cos(Xv) sin(mλp)] (2.15)

where it is assumed that:
fnm = (2πNnm)−1/2 (−1)m (2.16)

and:

Nnm =
2

(2n+ 1)

(n+m)!

(n−m)!
(2.17)

whereby it should be remarked that this normalization operator differs from the one used
in appendix A. We must also specify the summation over the variable v and the corre-
sponding definition of Xv . In total there are approximately 400 to 500 different terms in
the summation of v each consisting of a linear combination of six astronomical elements:

Xv = k1w1 + k2w2 + k3w3 + k4w4 − k5w5 + k6w6 (2.18)

where k1 . . . k6 are integers and:

w2 = 218.3164 + 13.17639648 T
w3 = 280.4661 + 0.98564736 T
w4 = 83.3535 + 0.11140353 T
w5 = 125.0445 - 0.05295377 T
w6 = 282.9384 + 0.00004710 T

where T is provided in Julian days relative to January 1, 2000, 12:00 ephemeris time.
(When working in UT this reference modified Julian date equals to 51544.4993.) Finally
w1 is computed as follows:

w1 = 360 ∗ U + w3 − w2 − 180.0

where U is given in fractions of days relative to midnight. In tidal literature one usually
finds the classification of w1 to w6 as is shown in table 2.2 where it must be remarked that
w5 is retrograde whereas all other elements are prograde. This explains the minus sign
equation (2.18).
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Here Frequency Cartwright, Explanation
Doodson

k1,w1 daily τ , τ mean time angle in lunar days
k2,w2 monthly q, s mean longitude of the moon
k3,w3 annual q′, h mean longitude of the sun
k4,w4 8.85 yr p, p mean longitude of lunar perigee
k5,w5 18.61 yr N , −N ′ mean longitude of ascending lunar node
k6,w6 20926 yr p′, p1 mean longitude of the sun at perihelion

Table 2.2: Classification of frequencies in tables of tidal harmonics. The columns contain:
[1] the notation used in the Doodson number, [2] the frequency, [3] notation used in tidal
literature, [4] explanation of variables.

2.4 Exercises

1. Show that the potential energy difference for 0 to H meter above the ground becomes
m.g.H kg.m2/s2. Your answer must start with the potential function U = −µ/r.

2. Show that the outcome of Newton’s gravity law for two masses m1 and m2 evaluated
for one of the masses corresponds to the gradient of a so-called point mass potential
function U = G.m1/r + const. Verify that the point mass potential function in 3D
exactly fullfills the Laplace equation.

3. Show that the function 1/rPM in figure 2.1 can be developed in a series of Legendre
functions Pn(cosψ).

4. Show that a work integral for a closed path becomes zero when the force is equal
to a mass times an acceleration for a potential functions that satisfy the Laplace
equation.

5. Show that a homogeneous hollow sphere and a solid equivalent generate the same
potential field outside the sphere.

6. Compute the ratio between the acceleration terms Fem and Fpm in figure 2.1 at
the Earth’s surface. Do this at the Poles and the Lunar sub-point. Example 2.2.3
provides constants that apply to the Earth Moon Sun problem.

7. Assume that the astronomical tide generating potential is developed to degree 2, for
which values of ψ is the equilibrium tide zero?

8. Compute the extreme tidal height displacements for the equilibrium tide on Earth
caused by Jupiter, its mass ratio with respect to Earth is 317.8.

9. How much observation time is required to separate the S2 tide from the K2 tide.

12



Chapter 3

Tides deforming the Earth

3.1 Introduction

Imagine that the solid Earth itself is somehow deforming under tidal accelerations, i.e.
gradients of the tide generating potential. This is not unique to our planet, all bodies
in the universe experience the same effect. Notorious are moons in the neighborhood of
the larger planets such as Saturn where the tidal forces can exceed the maximum allowed
stress causing the Moon to collapse.

It must be remarked that the Earth will resist forces caused by the tide generating
potential. This was recognized by A.E.H. Love (1927), see [4], who assumed that an
applied astronomical tide potential for one tidal line:

Ua =
∑

n

Ua
n =

∑

n

U ′

n(r)Sn exp(jσt) (3.1)

where Sn is a surface harmonic, will result in a deformation at the surface of the Earth:

un(R) = g−1 [hn(R)Sner + ln(R)∇Snet]U
′

n(R) exp(jσt) (3.2)

where er and et are radial and tangential unit vectors. The indirect potential caused by
this solid Earth tide effect will be:

δU(R) = kn(R)U ′

n(R)Sn exp(jσt) (3.3)

Equations (3.2) and (3.3) contain so-called Love numbers hn, kn and ln describing the
“geometric radial”, “indirect potential” and “geometric tangential” effects. Finally we
remark that Love numbers can be obtained from geophysical Earth models and also from
geodetic space technique such as VLBI, see table 3.1 taken from [16], where we present
the Love numbers reserved for the deformations by a volume force, or potential, that does
not load the surface. Loading is described by separate Love numbers h′n, k′n and l′n that
will be discussed in chapter 6.

3.2 Solid Earth tides

According to equations (3.2) and (3.3) the solid Earth itself will deform under the tidal
forces. Well observable is the vertical effect resulting in height variations at geodetic
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Dziewonski-Anderson Gutenberg-Bullen

n hn kn ln hn kn ln
2 0.612 0.303 0.0855 0.611 0.304 0.0832
3 0.293 0.0937 0.0152 0.289 0.0942 0.0145
4 0.179 0.0423 0.0106 0.175 0.0429 0.0103

Table 3.1: Love numbers derived from the Dziewonski-Anderson and the Gutenberg-Bullen
Earth models.

length NS baselines EW baselines

1◦ 0.003 0.004
2◦ 0.006 0.009
5◦ 0.016 0.022

10◦ 0.031 0.043
20◦ 0.063 0.084
50◦ 0.145 0.186
90◦ 0.134 0.237

Table 3.2: The maximum solid earth tide effect [m] on the relative vertical coordinates
of geodetic stations for North-South and East-West baselines varying in length between 0
and 90◦ angular distance.

stations. To compute the so-called solid-Earth tide ηs we represent the tide generating
potential as the series:

Ua =
∞∑

n=2

Ua
n

so that:

ηs = g−1
∞∑

n=2

hnU
a
n (3.4)

An example of ηs is shown in table 3.2 where the extreme values of |ηs| are tabulated as a
relative height of two geodetic stations separated by a certain spherical distance. One may
conclude that regional GPS networks up to e.g. 200 by 200 kilometers are not significantly
affected by solid earth tides; larger networks are affected and a correction must be made
for the solid Earth tide. The correction itself is probably accurate to within 1 percent or
better so that one doesn’t need to worry about errors in excess of a couple of millimeters.

3.3 Long period equilibrium tides in the ocean

At periods substantially longer than 1 day the oceans are in equilibrium with respect to
the tide generating potential. But also here the situation is more complicated than one
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immediately expects from equation (2.9) due to the existence of kn in equation (3.3). For
this reason long period equilibrium tides in the oceans are derived by:

ηe = g−1
∑

n

(1 + kn − hn)Ua
n (3.5)

essentially because the term (1 + kn) dictates the geometrical shape of the oceans due to
the tide generating potential but also the indirect or induced potential knU

a
n . Still there

is a need to include −hnU
a
n since ocean tides are always relative to the sea floor or land

which is already experiencing the solid earth tide effect ηs described in equation (3.4).
Again we emphasize that equation (3.5) is only representative for a long periodic response
of the ocean tide which is in a state of equilibrium. Hence equation (3.5) must only be
applied to all m = 0 terms in the tide generating potential.

3.4 Tidal accelerations at satellite altitude

The astronomical tide generating potential U at the surface of the Earth with radius re
has the usual form:

U(re) =
µp

rp

∞∑

n=2

(re/rp)
n Pn(cosψ) =

µp

re

∞∑

n=2

(re/rp)
n+1 Pn(cosψ) (3.6)

The potential can also be used directly at the altitude of the satellite to compute gradi-
ents, but in fact there is no need to do this since the accelerations can be derived from
Newton’s definition of tidal forces. This procedure does not anymore work for the induced
or secondary potential U ′(re) since the theory of Love predicts that:

U ′(re) =
µp

re

∞∑

n=2

(re/rp)
n+1 knPn(cosψ) (3.7)

where it should be remarked that this expression is the result of a deformation of the
Earth as a result of tidal forcing. The effect at satellite altitude should be that of an
upward continuation, in fact, it is a mistake to replace re by the satellite radius rs in the
last equation. Instead to bring U ′(re) to U ′(rs) we get the expression:

U ′(rs) =
µp

re

∞∑

n=2

(re/rs)
n+1 (re/rp)

n+1 knPn(cosψ) (3.8)

Finally we eliminate cos(ψ) by use of the addition theorem of Legendre functions:

U ′(rs) =
µp

re

∞∑

n=2

(
r2e
rsrp

)n+1
kn

2n+ 1

n∑

m=0

Pnm(cos θp)Pnm(cos θs) cos(m(λs − λp)) (3.9)

where (rs, θs, λs) and (rp, θp, λp) are spherical coordinates in the terrestial frame respec-
tively for the satellite and the planet in question. This is the usual expression as it can
be found in literature, see for instance [16].

Gradients required for the precision orbit determination (POD) software packages are
derived from U(rs) and U ′(rs) first in spherical terrestial coordinates which are then
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transformed via the appropriate Jacobians into terrestial Cartesian coordinates and later
in inertial Cartesian coordinates which appear in the equations of motion in POD. Dif-
ferentiation rules show that the latter transformation sequence follows the transposed
transformation sequence compared to that of vectors.

Satellite orbit determination techniques allow one to obtain in an indepent way the
k2 Love number of the Earth or of an arbitrary body in the solar system. Later in these
notes it will be shown that similar techniques also allow to estimate the global rate of
dissipation of tidal energy, essentially because tidal energy dissipation result in a phase
lag between the tidal bulge and the line connecting the Earth to the external planet for
which the indirect tide effect is computed.

3.5 Gravimetric solid earth tides

A gravimeter is an instrument for observing the actual value of gravity. There are several
types of instruments, one type measures gravity difference between two locations, another
type measures the absolute value of gravity. The measured quantity is usually expressed
in milligals (mgals) relative to an Earth reference gravity model. The milligal is not a S.I.
preferred unit, but it is still used in research dealing with gravity values on the Earth’s
surface, one mgal equals 10−5 m/s2, and the static variations referring to a value at the
mean sea level vary between -300 to +300 mgal. Responsible for these static variations
are density anomalies inside the Earth.

Gravimeters do also observe tides, the range is approximately 0.1 of a mgal which is
within the accuracy of modern instruments. Observed are the direct astronomical tide,
the indirect solid earth tide but also the height variations caused by the solid Earth tides.
According to [18] we have the following situation:

V = V0 + ηs
∂V0

∂r
+ Ua + U I (3.10)

where V is the observed potential, V0 is the result of the Earth’s gravity field, ηs the
vertical displacement implied by the solid Earth tide, Ua is the tide generating potential
and U i the indirect solid Earth tide potential. In the following we assume that:

Ua =
∑

n

(
r

r0

)n

Ua
n

U i =
∑

n

(
r0
r

)n+1

knU
a
n

∂V

∂r
=

µ

r2
= −g

where µ is the Earth’s gravitational constant, r0 the mean equatorial radius, and Ua
n the

tide generating potential at r0. Note that in the definition of the latter equation we have
taken the potential as a negative function on the Earth surface where µ attains a positive
value. This is also the correct convention since the potential energy of a particle must be
increased to lift it from the Earth surface and it must become zero at infinity. We get:

∂V

∂r
=
∂V0

∂r
+ ηs

∂2V

∂r2
+
∂Ua

∂r
+
∂U i

∂r
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which becomes:

∂V

∂r
=
∂V0

∂r
+

2g

r
ηs +

∑

n

(
n

r

)(
r

r0

)n

Ua
n −

∑

n

(n+ 1)

r

(
r0
r

)n+1

knU
a
n

where ∂2V /∂r2 is approximated by 2g/r assuming a point mass potential function. When
substituting the solid Earth tide effect ηs we get:

∂V

∂r
=
∂V0

∂r
+

2g

r

∑

n

hnU
a
ng

−1 +
∑

n

(
n

r

)(
r

r0

)n

Ua
n −

∑

n

(n+ 1)

r

(
r0
r

)n+1

knU
a
n

so that for r ≈ r0:

∂V

∂r
=
∂V0

∂r
+
∑

n

{
2hn

n
+ 1 −

(
n+ 1

n

)
kn

}
nUa

n

r

which becomes:

−g = −g0 +
∑

n

{
1 +

2

n
hn −

(
n+ 1

n

)
kn

}
∂Ua

n

∂r

On gravity anomalies the effect becomes:

∆g = g − g0 = −
∑

n

{
1 +

2

n
hn −

(
n+ 1

n

)
kn

}
∂Ua

n

∂r

The main contribution comes from the term:

∆g = −
{

1 + h2 −
3

2
k2

}
∂Ua

2

∂r
= −1.17

∂Ua
2

∂r

while a secondary contribution comes from the term:

∆g = −
{

1 +
2

3
h3 −

4

3
k3

}
∂Ua

3

∂r
= −1.07

∂Ua
3

∂r

This shows that gravimeters in principle sense a scaled version of the astronomic tide
potential, the factors 1.17 and 1.07 are called gravimetric factors. By doing so gravimetric
observations add their own constraint to the definition of the Love numbers h2 and k2 and
also h3 and k3.

3.6 Reference system issues

In view of equation (3.5) we must be careful in defining parameters modeling the reference
ellipsoid. The reason is due to a contribution of the tide generating potential at Doodson
number 055.555 where it turns out that:

g−1Ua
2 = −0.19844 × P2,0(sinφ) (3.11)

g−1k2U
a
2 = −0.06013 × P2,0(sinφ) (3.12)

g−1(1 + k2)U
a
2 = −0.25857 × P2,0(sinφ) (3.13)

where we have assumed that k2 = 0.303, h2 = 0.612 and H(v) = −0.31459 at Doodson
number 055.555. The question “which equation goes where” is not as trivial as one might
think. In principle there are three tidal systems, and the definition is as follows:

17



• A tide free system: this means that eqn. (3.13) is removed from the reference ellipsoid
flattening.

• A zero-tide system: this means that eqn. (3.11) is removed but that (3.12) is not
removed from the reference ellipsoid flattening.

• A mean-tide system: this means that eqns. (3.13) is not removed from the reference
ellipsoid.

Important in the discussion is that the user of a reference system must be aware which
choice has been made in the definition of the flattening parameter of the reference ellipsoid.
The International Association of Geodesy recommends a zero-tide system so that it is not
necessary to define k2 at the zero frequency. In fact, from a rheologic perspective it is
unclear which value should be assigned to k2, the IAG recommendation is therefore the
most logical choice.

3.7 Exercises

1. Show that the Love numbers h2 and k2 can be estimated from observations of the
gravimeter tide in combination with observations of the long periodic ocean tide
observed by tide gauges.

2. What are the extreme variations in the water level of the M2 equilibrium tide at a
latitude of 10N.

3. What are the extreme variations in mgal of the M2 gravimetric tide at a latitude of
50S.

4. What is the largest relative gravimetric tidal effect between Amsterdam and Paris
as a result of the Moon.

5. Verify equation (3.11), how big is this effect between Groningen and Brussel.
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Chapter 4

Ocean tides

4.1 Introduction

Purpose of this chapter is to introduce some basic properties concerning the dynamics
of fluids that is applicable to the ocean tide problem. Of course the oceans themselves
will respond differently to the tide generating forces. Ocean tides are exactly the effect
that one observes at the coast; i.e. the long periodic, diurnal and semi-diurnal motions
between the sea surface and the land. In most regions on Earth the ocean tide effect
is approximately 0.5 to 1 meters whereas in some bays found along the coast of e.g.
Normandy and Brittany the tidal wave is amplified to 10 meters. Ocean tides may have
great consequences for daily life and also marine biology in coastal areas. Some islands
such as Mt. Saint Michèle in Brittany can’t be reached during high tide if no separate
access road would exist. A map of the global M2 ocean tide is given in figure 4.1 from
which one can see that there are regions without any tide which are called amphidromes
where a tidal wave is continuously rotating about a fixed geographical location. If we
ignore friction then the orientation of the rotation is determined by the balance between
the pressure gradient and the Coriolis force. It was Laplace who laid the foundations for
modern tidal research, his main contributions were:

• The separation of tides into distinct Species of long period, daily and twice daily
(and higher) frequencies.

• The (almost exact) dynamic equations linking the horizontal and vertical displace-
ment of water particles with the horizontal components of the tide-raising force.

• The hypothesis that, owing to the dominant linearity of these equations, the tide at
any place will have the same spectral frequencies as those present in the generating
force.

Laplace derived solutions for the dynamic equations only for the ocean and atmospheres
covering a globe, but found them to be strongly dependent on the assumed depth of fluid.
Realistic bathymetry and continental boundaries rendered Laplace’s solution mathemati-
cally intractable. To explain this problem we will deal with the following topics:

• Define the equations of motion
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Figure 4.1: The top panel shows the amplitudes in centimeter of the M2 ocean tide, the
bottom panel shows the corresponding phase map.
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• What is advection, friction and turbulence

• The Navier Stokes equations

• Laplace tidal equations

• A general wave solution, the Helmholtz equation

• Dispersion relations

However we will avoid to represent a complete course in physical oceanography; within
the scope of this course on tides we have to constrain ourselves to a number of essential
assumptions and definitions.

4.2 Equations of motion

4.2.1 Newton’s law on a rotating sphere

The oceans can be seen as a thin rotating shell with a thickness of approximately 5 km
relative on a sphere with an average radius of 6371 km. To understand the dynamics of
fluids in this thin rotating shell we initially consider Newton’s law f = m.a for a given
water parcel at a position:

x = eix
i = eax

a (4.1)

In this equation ei and ea are base vectors. Here the i index is used for the inertial
coordinate frame, the local Earth-fixed coordinate system gets index a. Purpose of the
following two sections will be to find expressions for inertial velocities and accelerations
and their expressions in the Earth fixed system, which will appear in the equations of
motion in fluid dynamics.

Inertial velocities and accelerations

There is a unique relation between the inertial and the Earth-fixed system given by the
transformation:

ei = Ra
i ea (4.2)

In the inertial coordinate system, velocities can be derived by a straightforward differen-
tiation so that:

ẋ = eiẋ
i (4.3)

and accelerations are obtained by a second differentiation:

ẍ = eiẍ
i (4.4)

Note that this approach is only possible in an inertial frame, which is a frame that does not
rotate or accelerate by itself. If the frame would accelerate or rotate then ei also contains
derivatives with respect to time. This aspect is worked out in the following section.
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Local Earth fixed velocities and accelerations

The Earth fixed system is not an inertial system due to Earth rotation. In this case the
base vectors themselves follow different differentiation rules:

ėa = ω × ea (4.5)

where ω denotes the vector (0, 0,Ω) for an Earth that is rotating about its z-axis at a
constant speed of Ω radians per second. We find:

ëa = ω̇ × ea + ω × ω × ea (4.6)

and:
ẍ = ëax

a + 2ėaẋ
a + eaẍ

a (4.7)

which is equivalent to:

ẍ = ω̇ × eax
a + ω × ω × eax

a + 2ω × eaẋ
a + eaẍ

a (4.8)

leading to the equation:

ẍi = ẍa + 2ω × ẋa + ω̇ × xa + ω × ω × xa (4.9)

where ẍi is the inertial acceleration vector, ẍa the Earth-fixed acceleration vector. The
difference between these vectors is the result of frame accelerations:

• The term 2ω×ẋa is known as the Coriolis effect. Consequence of the Coriolis effect is
that particles moving over the surface of the Earth will experience an apparent force
directed perpendicular to their direction. On Earth the Coriolis force is directed to
East when a particle is moving to the North on the Northern hemisphere.

• The term ω × ω × xa is a centrifugal contribution. This results in an acceleration
component that is directed away from the Earth’s spin axis.

• The term ω̇× xa indicates a rotational acceleration which can be ignored unless one
intends to consider the small variations in the Earth’s spin vector ω.

4.2.2 Assembly step momentum equations

To obtain the equations of motion for fluid problems we will consider all relevant acceler-
ations that act on a water parcel in the Earth’s fixed frame:

• g is the sum of gravitational and centrifugal accelerations, ie. the gravity acceleration
vector,

• −2ω×u is the Coriolis effect which is an apparent acceleration term caused by Earth
rotation,

• f symbolizes additional accelerations which are for instance caused by friction and
advection in fluids,

• −ρ−1∇p is the pressure gradient in a fluid.

The latter two terms are characteristic for motions of fluids and gasses on the Earth’s
surface. The pressure gradient is the largest, and it will be explained first because it
appears in all hydrodynamic models.
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Figure 4.2: Pressure gradient

The pressure gradient

This gradient follows from the consideration of a pressure change on a parcel of water as
shown in figure 4.2. In this figure there is a pressure p acting on the western face dy.dz
and a pressure p+ dp acting on the eastern face dy.dz. To obtain a force we multiply the
pressure term times the area on which it is acting. The difference between the forces is
only relevant since p itself could be the result of a static situation:

p.dy.dz − (p+ dp)dy.dz = −dpdydz

To obtain a force by volume one should divide this expression by dx.dy.dz to obtain:

−∂p
∂x

To obtain a force by mass one should divide by ρ.dx.dy.dz to obtain:

−1

ρ

∂p

∂x

This expression is the acceleration of a parcel towards the East which is our x direction.
To obtain the acceleration vector of the water parcel one should compute the gradient of
the pressure field p and scale with the term −1/ρ.

Geostrophic balance

The following expression considers the balance between local acceleration, the pressure
gradient, the Coriolis effect and residual forces f :

Du

D t
= −1

ρ
∇p − 2ω × u + g + f. (4.10)

This vector equation could also be formulated as three separate equations with the local
coordinates x, y and z and the corresponding velocity components u, v and w. Here we
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Figure 4.3: Choice of the local coordinate system relevant to the equations of motion.

follow the convention found in literature and assign the x-axis direction corresponding
with the u-velocity component to the local east, the y-axis direction and corresponding
v-velocity component to the local north, and the z-axis including the w-velocity pointing
out of the sea surface, see also figure 4.3. All vectors in equation (4.10) must be expressed
in the local x, y, z coordinate frame. If φ corresponds to the latitude of the water parcel
and Ω to the length of ω then the following substitutions are allowed:

ω = (0,Ω cos φ,Ω sinφ)T

g = (0, 0,−g)T

f = (Fx, Fy, Fz)
T

v = (u, v,w)T

The result after substitution is the equations of motions in three dimensions:

Du

D t
= −1

ρ

∂p

∂x
+ Fx + 2Ω sinφ v − 2Ω cosφw

D v

D t
= −1

ρ

∂p

∂y
+ Fy − 2Ω sinφu (4.11)

Dw

D t
= −1

ρ

∂p

∂z
+ Fz + 2Ω cosφu− g

Providing that we forget about dissipative and advective terms eqns. (4.11) tell us nothing
more than that the pressure gradient, the Coriolis force and the gravity vector are in
balance, see also figure 4.4. Some remarks with regard to the importance of acceleration
terms in eqns. (4.11)(a-c):
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Figure 4.4: The equations of motion is dynamical oceanography, the Coriolis force, the
pressure gradient and the gravity vector are in balance.

• The vertical velocity w is small and we will drop this term.

• In eq. (4.11)(c) the gravity term and the pressure gradient term dominate, cancel-
lation of the other terms results in the hydrostatic equation telling us that pressure
linearly increases by depth.

• The term f = 2Ω sinφ is called the Coriolis parameter.

4.2.3 Advection

The terms Du/Dt, Dv/Dt and Dw/Dt in eqns. (4.11) should be seen as absolute deriva-
tives. In reality these expressions contain an advective contribution.

Du

D t
=

∂u

∂t
+ u.

∂u

∂x
+ v.

∂u

∂y
+ w.

∂u

∂z

D v

D t
=

∂v

∂t
+ u.

∂v

∂x
+ v.

∂v

∂y
+ w.

∂v

∂z

Dw

D t
=

∂w

∂t
+ u.

∂w

∂x
+ v.

∂w

∂y
+ w.

∂w

∂z

(4.12)

In literature terms like ∂u/∂t are normally considered as so-called “local accelerations”
whereas advective terms like u∂u/∂x + ... are considered as “field accelerations”. The
physical interpretation is that two types of acceleration may take place. In the first terms
on the right hand side, accelerations occur locally at the coordinates (x, y, z) resulting
in ∂u/∂t, ∂v/∂t, and ∂w/∂t whereas in the second case the velocity vector is changing
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with respect to the coordinates resulting in advection. This effect is non-linear because
velocities are squared, (e.g. u(∂u/∂x) = 1

2 [∂(u2)/∂x]).

4.2.4 Friction

In eq. (4.11) friction may appear in Fx, Fy and Fz. Based upon observational evidence,
Stokes suggested that tangentional stresses are related to the velocity shear as:

τij = µ (∂ui/∂xj + ∂uj/∂xi) (4.13)

where µ is a molecular viscosity coefficient characteristic for a particular fluid. Frictional
forces are obtained by:

F =
∂τij
∂xj

= µ
∂2ui

∂xj
2

+ µ
∂

∂xi

(
∂ui

∂xj

)
(4.14)

which is approximated by:

F = µ
∂2ui

∂xj
2

(4.15)

if an incompressible fluid is assumed. A separate issue is that viscosity ν = µ/ρ may not
be constant because of turbulence. In this case:

F =
∂τij
∂xj

=
∂

∂xj

(
µ
∂ui

∂xj

)
(4.16)

although it should be remarked that also this equation is based upon an assumption. As
a general rule, no known oceanic motion is controlled by molecular viscosity, since it is far
too weak. In ocean dynamics the ”Reynold stress” involving turbulence or eddy viscosity
always applies, see also [19] or [25].

4.2.5 Turbulence

Fluid motions often show a turbulent behavior whereby energy contained in small scale
phenomena transfer their energy to larger scales. In order to assess whether turbulence
occurs in an experiment we define the so-called Reynolds number Re which is a measure
for the ratio between advective and the frictional terms. The Reynolds number is approx-
imated as Re = U.L/ν, where U and L are velocities and lengths at the characteristic
scales at which the motions occurs. Large Reynolds numbers, e.g. ones which are greater
than 1000, usually indicates turbulent flow.

An example of this phenomenon can be found in the Gulf stream area where L is of
the order of 100 km, U is of the order of 1 m/s and a typical value for ν is approximately
10−6 m2s−1 so that Re = U.L/ν ≈ 1011. The effect displays itself as a meandering
of the main stream which can be nicely demonstrated by infrared images of the area
showing the turbulent flow of the Gulf stream occasionally releasing eddies that will live
for considerable time in the open oceans. The same phenomenon can be observed in other
western boundary regions of the oceans such as the Kuroshio current East of Japan and
the Argulhas retroreflection current south of Cape of Good Hope.
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Figure 4.5: Continuity and depth averaged velocities

4.3 Laplace Tidal Equations

So far the equations of motions are formulated in three dimensions. The goal of the
Laplace Tidal Equations is in first instance to simplify this situation. Essentially the LTE
describe the motions of a depth averaged velocity fluid dynamics problem. Rather than
considering the equations of motion for a parcel of water in three dimensions, the problem
is scaled down to two dimensions in x and y whereby the former is locally directed to the
east and the latter locally directed to the north. A new element in the discussion is a
consideration of the continuity equation.

To obtain the LTE we consider a box of water with the ground plane dimensions
dx times dy and height h representing the mean depth of the ocean, see also figure 4.5.
Moreover let u1 be the mean columnar velocity of water entering the box via the dy × h
plane from the west and u2 the mean velocity of water leaving the box via the dy×h plane
to the east. Also let v1 be the mean columnar velocity of water entering the box via the
dx×h plane from the south and v2 the mean velocity of water leaving the dx×h plane to
the north. In case there are no additional sources or drains (like a hole in the ocean floor
or some river adding water to it) we find that:

h.dy.(u2 − u1) + h.dx.(v2 − v1) +
dV

d t
= 0 (4.17)

where the volume V is computed as dx.dy.h. Take η as the surface elevation due to the
in-flux of water and:

dV

d t
= dx.dy.

d η

d t
(4.18)

If the latter equation is substituted in eq.(4.17) and all terms are divided by dx.dy we
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find:

h

(
∂u

∂x
+
∂v

∂y

)
+
∂η

∂t
= 0 (4.19)

The latter equation should now be combined with eq. (4.11) where the third equation can
be simplified as a hydrostatic approximation essentially telling us that a water column of
η meters is responsible for a certain pressure p:

p = g.ρ.η (4.20)

following the requirement that the pressure p is computed relative to a surface that doesn’t
experience a change in height. We get the horizontal pressure gradients:

−1

ρ

∂p

∂x
=
∂(−gη)
∂x

and
−1

ρ

∂p

∂y
=
∂(−gη)
∂y

(4.21)

Moreover for the forcing terms Fx and Fy in eq. (4.11) we substitute the horizontal gradi-
ents:

Fx =
∂Ua

∂x
+Gx and Fy =

∂Ua

∂y
+Gy (4.22)

where Ua is the total tide generating potential andGx andGy terms as a result of advection
and/or friction. Substitution of eqns. (4.21) and (4.22) in eqn. (4.11) and elimination of
the term 2Ω cos(φ)w in the first and second equation results in a set of equations which
were first formulated by Laplace:

Du

D t
=

∂

∂x
(−gη + Ua) + f.v +Gx

Dv

D t
=

∂

∂y
(−gη + Ua) − f.u+Gy (4.23)

Dη

D t
= −h

(
∂u

∂x
+
∂v

∂y

)

The Laplace tidal equations consist of two parts; equations (4.23)(a-b) are called the
momentum equations, and (4.23)(c) is called the continuity equation. Various refinements
are possible, two relevant refinements are:

• We have ignored the effect of secondary tide potentials caused by ocean tides loading
on the lithosphere, more details can be found in chapter 6.

• The depth term h could by replaced by h+ η because the ocean depth is increased
by the water level variation η (although this modification would introduce a non-
linearity).

• For the LTE: η ≪ h.

To solve the LTE it is also necessary to pose initial and boundary conditions including
a domain in which the equations are to be solved. From physical point of view a no-
flux boundary condition is justified, in which case (u, n) = 0 with n perpendicular to the
boundary of the domain. For a global tide problem the domain is essentially the oceans,
and the boundary is therefor the shore.
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Other possibilities are to define a half open tide problem where a part of the boundary
is on the open ocean where water levels are prescribed while another part is closed on the
shore. This option is often used in civil engineering application where it is intended to
study a limited area problem. Other variants of boundary conditions including reflecting
or (weakly) absorbing boundaries are an option in some software packages.

In the next section we show simple solutions for the Laplace tidal equations demon-
strating that the depth averaged velocity problem, better known as the barotropic tide
problem, can be approximated by a Helmholtz equation which is characteristic for wave
phenomena in physics.

4.4 Helmholtz equation

Intuitively we always assumed that ocean tides are periodic phenomena, but of course it
would be nicer to show under which conditions this is the case. Let us introduce a test
solution for the problem where we assume that:

u(t) = û exp(jωt) (4.24)

v(t) = v̂ exp(jωt) (4.25)

η(t) = η̂ exp(jωt) (4.26)

where j =
√
−1. For tides we know that the gradient of the tide generating potential is:

Ua(t) = Γ̂ exp(jωt) (4.27)

Furthermore we will simplify advection and friction and assume that these terms can be
approximated by:

Gx(t) = Ĝx exp(jωt) (4.28)

Gy(t) = Ĝy exp(jωt) (4.29)

If this test solution is substituted in the momentum equations then we obtain:

[
jω −f
+f jω

] [
û
v̂

]
= −g

[
∂η̂/∂x
∂η̂/∂y

]
+

[
∂Γ̂/∂x

∂Γ̂/∂y

]
+

[
Gx

Gy

]
(4.30)

Provided that we are dealing with a regular system of equations it is possible to solve û
and v̂ and to substitute this solution in the continuity equation that is part of the LTE.
After some manipulation we get:

(ω2−f2)η̂+gh

(
∂2η̂

∂x2
+
∂2η̂

∂y2

)
= h

(
∂2Γ̂

∂x2
+
∂2Γ̂

∂y2

)
+h

(
∂Ĝx

∂x
+
∂Ĝy

∂y

)
+
jfh

ω

(
∂Ĝx

∂y
− ∂Ĝy

∂x

)

(4.31)
The left hand side of equation (4.31) is known as the Helmholtz equation which is typical
for wave phenomena in physics. The term gh in eq. (4.31) contains the squared surface
speed (c) of a tidal wave. Some examples are: a tidal wave in a sea of 50 meter depth
runs with a velocity of

√
50.g which is about 22 m/s or 81 km/h. In an ocean of 5 km

depth c will rapidly increase, we get 223.61 m/s or 805 km/h which is equal to that of
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an aircraft. A critical step in the derivation of the Helmholtz equation is the treatment
of advection and friction term contained in Gx and Gy and the vorticity term ζ. As long
as these terms are written in the form of harmonic test functions like in (4.28) and (4.29)
there is no real point of concern. To understand this issue we must address the problem
of a drag law that controls the dissipation of a tidal wave.

4.5 Drag laws

The drag law is an essential component of a hydrodynamic tide model, omission of a
dissipative mechanism results in modeling tides as an undamped system since tidal waves
can not lose their energy. Physically seen this is completely impossible because the tides are
continuously excited by gravitational forcing. A critical step is therefor the formulation of
a dissipative mechanism which is often chosen as a bottom friction term. Friction between
layers of fluid was initially considered to be too small to explain the dissipation problem
in tides, friction against the walls of a channel or better the ocean floor is considered to be
more realistic. In this way the ocean tides dissipate more than 75 percent of their energy,
more details are provided in chapter 8.

There is an empirical law for bottom drag which was found by the Frenchman Chezy
who found that drag is proportional to the velocity squared and inverse proportional to
the depth of a channel. Chezy essentially compared the height gradient of rivers against
the flow in the river and geology of the river bed. Under such conditions the river bed
drag has to match the horizontal component of the pressure gradient, which essentially
follows from the height gradient of the river. The Chezy law extended to two dimensions
is:

Gx = −Cdu
√
u2 + v2 (4.32)

Gy = −Cdv
√
u2 + v2 (4.33)

where Cd = g/(hC2
z ), g is gravity, h is depth and Cz a scaling coefficient, or the Chezy

coefficient. In reality Cz depends on the physical properties of the river bed; reasonable
values are between 40 and 70.

Fortunately there exist linear approximations of the Chezy law to ensure that the
amount of energy dissipated by bottom friction over a tidal cycles obtains the same rate
as the quadratic law. This problem was originally investigated by the Dutch physicist
Lorentz. A realistic linear approximation of the quadratic bottom drag is for instance:

Gx = −ru/h (4.34)

Gy = −rv/h (4.35)

where r is a properly chosen constant (typically r=0.0013). Lorentz assumed that the
linear and quadratic drag laws have to match, ie. predict the same loss of energy over 1
tidal cycle. Lorentz worked out this problem for the M2 tide in the Waddenzee.

4.6 Linear and non-linear tides

We will summarize the consequences of non-linear acceleration terms that appear in the
Laplace tidal equations:
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• Linear ocean tides follow from the solution of the Laplace tidal equations whereby all
forcing terms, dissipative terms and friction terms can be approximated as harmonic
functions. The solution has to fulfill the condition posed by the Helmholtz equation,
meaning that the tides become a wave solution that satisfies the boundary conditions
of the Helmholtz equation. Essentially this means that ocean tides forced at a
frequency ω result in a membrane solution oscillating at frequency ω. The surface
speed of the tide is then

√
gH .

• Non-linear ocean tides occur when there are significant deviations from a linear
approximation of the bottom drag law, or when the tide is forced through its basin
geometry along the shore or through a channel. In this case advection and bottom
friction are the main causes for the generation of so-called parasitic frequencies which
manifest themselves as undertones, overtones or cross-products of the linear tide.
Examples of non-linear tides are for instance M0 and M4 which are the result of an
advective term acting on M2. Some examples of cross-products are MS0 and MS4

which are compound tides as a result of M2 and S2.

4.7 Dispersion relation

Another way to look at the tide problem (or in fact many other wave problems in physics) is
to study a dispersion relation. We will do this for the simplest case in order to demonstrate
another basic property of ocean tides, namely that the decrease in the surface speed c
causes a shortening of length scale of the wave. For the dispersion relation we assume an
unforced or free wave of the following form:

u(x, y, t) = û exp(j(ωt − kx− ly)) (4.36)

v(x, y, t) = v̂ exp(j(ωt − kx− ly)) (4.37)

η(x, y, t) = η̂ exp(j(ωt − kx− ly)) (4.38)

which is only defined for a local region. This generic solution is that of a surface wave, ω
is the angular velocity of the tide, and k and l are wave numbers that provide length scale
and direction of the wave.

To derive the dispersion relation we ignore the right hand side of eq. (4.31) and sub-
stitute characteristic wave functions. This substitution results in:

(ω2 − f2) = c2
(
k2 + l2

)
(4.39)

which is a surprisingly simple relation showing that k2+l2 has to increase when c decreases
and visa versa. In other words, now we have shown that tidal wave lengths become
shorter in shallow waters. The effect is demonstrated in figure 4.6 with a map of the tidal
amplitudes and phases of the M2 tide in the North Sea basin.

But, there are more hidden features in the dispersion relation. The right hand side of
equation (4.39) is always positive since we only see squares of c, k and l. The left hand
side is only valid when ω is greater than f . Please remember that the Coriolis parameter
f = 2Ω sinφ is latitude dependent with zero at the equator. Near the equator we will
always get free waves passing from west to east or visa versa.
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Figure 4.6: North Sea M2 tide
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For frequencies ω equal to f one expects that there is a latitude band inside which the
free wave may exist. A nice example is the K1 tidal wave which is a dominant diurnal
tide with a period of 23 hours and 56 minutes, so that ω = Ω. The conclusion is that free
waves at the K1 frequency can only exist when sinφ is less than 1/2 which is true for a
latitudes between 30N and 30S.

4.8 Exercises

• What is the magnitude of the Coriolis effect for a ship sailing southward at 50N with
a speed of 20 knots

• Is water flowing from your tap into the kitchen sink turbulent?

• What is the magnitude of a height gradient of a river with a flow of 0.5 m/s and a
Chezy coefficient of 30. The mean depth of the river is 5 meter.

• What latitude extremes can we expect for free tidal waves at the Mm frequency?

• How much later is the tide at Firth of Worth compared to The Wash?

• What extra terms appear in the Helmholtz equation for a linear bottom drag model.

• Show that advection can be written as u∇u

• Shows that vorticity is conserved in fluid mechanics problems that are free of friction.
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Chapter 5

Data analysis methods

Deep ocean tides are known to respond at frequencies identical to the Doodson numbers
in tables B.1 and B.2. Non-linearities and friction in general do cause overtones and
mixed tides, but, this effect will only appear in shallow waters or at the boundary of the
domain. In the deep oceans it is very unlikely that such effects dominate in the dynamical
equations. Starting with the property of the tides we present two well known data analysis
methods used in tidal research.

5.1 Harmonic Analysis methods

A perhaps unexpected consequence of the tidal harmonics table is that at least 18.61 years
of data would be required to separate two neighboring frequencies because of the fact that
main lines in the spectrum are modulated by smaller, but significant, side-lines. Compare
for instance table B.1 and B.2 where one can see that most spectral lines require at least
18.61 years of observation data in order to separate them from side-lines. Fortunately,
extensive analysis conducted by [6] have shown that a smooth response of the sea level is
likely. Therefore the more practical approach is to take at least two Doodson numbers and
to form an expression where only a year worth of observations determine “amplitude and
phase” of a constituent. However, this is only possible if one assumes a fixed amplitude
ratio of a side-line with respect to a main-line where the ratio itself can be taken from the
table of tidal harmonics.

Consider for instance table B.2 where M2 is dominated by spectral lines at the Dood-
son numbers 255.555 and 255.545 and where the ratio of the amplitudes is approximately
−0.02358/0.63194 = −0.03731. We will now seek an expression to model the M2 con-
stituent:

M2(t) = CM2
[cos(2ω1t− θM2

) + α cos(2ω1t+ ω5t− θM2
)] (5.1)

where CM2
and θM2

represent the amplitude and phase of the M2 tide and where α =
−0.03731. Starting with:

M2(t) = CM2
cos(2ω1t− θM2

)

+ αCM2
{cos(2ω1t− θM2

) cos(ω5t) − sin(2ω1t− θM2
) sin(ω5t)}

we arrive at:

M2(t) = CM2
{(1 + α cos(ω5t)) cos(2ω1t− θM2

) − α sin(ω5t) sin(2ω1t− θM2
)} (5.2)
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which we will write as:

M2(t) = CM2
f(t) {cos(u(t)) cos(2ω1t− θM2

) − sin(u(t)) sin(2ω1t− θM2
)} (5.3)

or
M2(t) = CM2

f(t) cos(2ω1t+ u(t) − θM2
) (5.4)

so that:
M2(t) = AM2

f(t) cos(2ω1t+ u(t)) +BM2
f(t) sin(2ω1t+ u(t)) (5.5)

where

AM2
= CM2

cos(θM2
)

BM2
= CM2

sin(θM2
)

In literature the terms AM2
and BM2

are called “in-phase” and “quadrature” or “out-of-
phase” coefficients of a tidal constituent, whereas the f(t) and u(t) coefficients are known
as nodal modulation factors, stemming from the fact that ω5t corresponds to the right
ascension of the ascending node of the lunar orbit. In order to get convenient equations
we work out the following system of equations: (Ω = ω5t):

f(t) =
{
(1 + α cos(Ω))2 + (α sin(Ω))2

}1/2

u(t) = arctan

(
α sin(Ω)

1 + α cos(Ω)

)

Finally a Taylor series around α = 0 gives:

f(t) = (1 +
1

4
α2 +

1

64
α4) + (α− 1

8
α3 − 1

64
α5) cos Ω

+ (−1

4
α2 +

1

16
α4) cos(2Ω) + (

1

8
α3 − 5

128
α5) cos(3Ω) (5.6)

−
(

5

64

)
cos(4Ω) +

7α5

128
cos(5Ω) +O(α6)

u(t) = α sin(Ω) − 1

2
α2 sin(2Ω) +

1

3
α3 sin(3Ω)

− 1

4
α4 sin(4Ω) +

1

5
α5 sin(5Ω) +O(α6) (5.7)

Since α is small it is possible to truncate these series at the quadratic term. The equations
show that f(t) and u(t) are only slowly varying and that they only need to be computed
once when e.g. working with a year worth of tide gauge data.

The Taylor series for the above mentioned nodal modulation factors were derived by
means of the Maple software package and approximate the more exact expressions for f
and u. However the technique seems to fail whenever increased ratios of the main line
to the side line occur as is the case with the e.g. the K2 constituent or whenever there
are more side lines. A better way of finding the nodal modulation factors is then to
numerically compute at sufficiently dense steps the values of the tide generating potential
for a particular constituent at an arbitrary location on Earth over the full nodal cycle
and to numerically estimate Fourier expressions like f(Ω) =

∑
n fn cos(n.Ω) and u(Ω) =∑

n un sin(n.Ω) with eq. (5.4) as a point of reference.
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5.2 Response method

The findings of [6] indicate that ocean tides η(t) can be predicted as a convolution of a
smooth weight function and the tide generating potential Ua:

η̂(t) =
∑

s

w(s)Ua(t− τs) (5.8)

with the weights w determined so that the prediction error η(t) − η̂(t) is a minimum in
the least squares sense. The weights w(s) have a simple physical interpretation: they
represent the sea level response at the port (read: point of observation) to a unit impulse
Ua(t) = δ(t), hence the name “response method”. The actual input function Ua(t) may
be regarded as a sequence of such impulses. The scheme used in [6] is to expand Ua(t) in
spherical harmonics,

Ua(θ, λ; t) = g
N∑

n=0

n∑

m=0

[anm(t)Unm(θ, λ) + bnm(t)Vnm(θ, λ)] (5.9)

containing the complex spherical harmonics:

Unm + jVnm = Ynm = (−1)m
[
2n+ 1

4π

]1/2 [(n−m)!

(n+m)!

]1/2

Pnm(cos θ) exp(jmλ) (5.10)

and to compute the coefficients anm(t) and bnm(t) for the desired time interval. The
convergence of the spherical harmonics is rapid and just a few terms n,m will do. The
m-values separate input functions according to species and the prediction formalism is:

η̂(t) =
∑

n,m

∑

s

[unm(s)anm(t− τs) + vnm(s)bnm(t− τs)] (5.11)

where the prediction weights wnm(s) = unm(s) + jvnm(s) are determined by least-squares
methods, and tabulated for each port (these take the place of the tabulated Ck and θk in
the harmonic method). For each year the global tide function cnm(t) = anm(t) + jbnm(t)
is computed and the tides then predicted by forming weighted sums of c using the weights
w appropriate to each port. The spectra of the numerically generated time series c(t) have
all the complexity of the Darwin-Doodson expansion; but there is no need for carrying
out this expansion, as the series c(t) serves as direct input into the convolution prediction.
There is no need to set a lower bound on spectral lines; all lines are taken into account
in an optimum sense. There is no need for the f, u factors, for the nodal variations (and
even the 20926 y variation) is already built into c(t). In this way the response method
makes explicit and general what the harmonic method does anyway – in the process of
applying the f, u factors. The response method leads to a more systematic procedure,
better adapted to computer use. According to [6] its formalism is readily extended to
include nonlinear, and perhaps even meteorological effects.

5.3 Exercises

1. Why is the response method for tidal analysis more useful and successful than the
harmonic tidal analysis method, ie. what do we learn from this method what couldn’t
be seen with the harmonic tide analysis method.
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2. Design a flow diagram for a program that solves tidal amplitudes and phases from
a dataset of tide gauge readings that contains gaps and biases. Basic linear algebra
operations such as a matrix inversion should not be worked out in this flow diagram.

3. How could you see from historic tide constants at a gauge that the local morphology
has changed over time near the tide gauge.
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Chapter 6

Load tides

6.1 Introduction

Any tide in the ocean will load the sea floor which is not a rigid body. One additional
meter of water will cause 1000 kg of mass per square meter; integrated over a 100 by 100
km sea we are suddenly dealing 1013 kg which is a lot of mass resting on the sea floor.
Loading is a geophysical phenomenon that is not unique to tides, any mass that rests
on the lithosphere will cause a loading effect. Atmospheric pressure variations, rainfall,
melting of land ice and evaporation of lakes cause similar phenomena. An important
difference is whether we are dealing with a visco-eleastic or just an elastic process. This
discussion is mostly related to the time scales at which the phenomenon is considered. For
tides we only deal with elastic loading. The consequence is that the Earth’s surface will
deform, and that the deformation pattern extends beyond the point where the original
load occurred. In order to explain the load of a unit point mass we introduce the Green
function concept, to model the loading effect of a surface mass layer we need a convolution
model, a more efficient algorithm uses spherical harmonics, a proof is presented in the last
section of this chapter.

6.2 Green functions

In [27] it is explained that a unit mass will cause a geometric displacement at a distance
ψ from the source:

G(ψ) =
re
Me

∞∑

n=0

h′nPn(cosψ) (6.1)

where Me is the mass of the Earth and re its radius. The Green function coefficients h′n
come from a geophysical Earth model, two versions are shown in table 6.1. The geophysical
theory from which these coefficients originate is not discussed in these lectures, instead we
mention that they represent the elastic loading effect and not the visco-elastic effect.

6.3 Loading of a surface mass layer

Ocean load tides cause vertical displacements of geodetic stations away from the load as
has been demonstrated by analysis of GPS and VLBI observations near the coast where
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Farrell Pagiatakis
n αn −h′n −k′n −h′n −k′n
1 0.1876 0.290 0 0.295 0
2 0.1126 1.001 0.308 1.007 0.309
3 0.0804 1.052 0.195 1.065 0.199
4 0.0625 1.053 0.132 1.069 0.136
5 0.0512 1.088 0.103 1.103 0.103
6 0.0433 1.147 0.089 1.164 0.093
8 0.0331 1.291 0.076 1.313 0.079

10 0.0268 1.433 0.068 1.460 0.074
18 0.0152 1.893 0.053 1.952 0.057
30 0.0092 2.320* 0.040* 2.411 0.043
50 0.0056 2.700* 0.028* 2.777 0.030

100 0.0028 3.058 0.015 3.127 0.016

Table 6.1: Factors αn in equation (6.3), and the loading Love numbers computed by [27]
and by [24]. An asterisk (∗) means that data was interpolated at n = 32, 56

vertical twice daily movements can be as large as several centimeters, see for example
figure 6.1. In order to compute these maps it is necessary to compute a convolution
integral where a surface mass layer, here in the form of an ocean tide chart, is multiplied
times Green’s functions of angular distance from each incremental tidal load, effective up
to 180◦. The loading effect is thus computed as:

ηl(θ, λ, t) =

∫

Ω
G(ψ)dM(θ′, λ′, t) (6.2)

where dM represents the mass at a distance ψ from the load. This distance ψ is the
spherical distance between (φ, λ) and (φ′, λ′). There is no convolution other than in φ and
λ, the model describes an instantaneous elastic response.

6.4 Computing the load tide with spherical harmonic func-

tions

But given global definition of the ocean tide η it is more convenient to express it in terms
of a sequence of load-Love numbers k′n and h′n times the spherical harmonics of degree
n of the ocean tide. If ηn(θ, λ; t) denote any nth degree spherical harmonics of the tidal
height η, the secondary potential and the bottom displacement due to elastic loading are
g(1 + k′n)αnηn and h′nαnηn respectively where:

αn =
3

(2n+ 1)
× ρw

ρe
=

0.563

(2n+ 1)
(6.3)

where ρw is the mean density of water and ρe the mean density of Earth. (Appendix A
provides all required mathematical background to derive the above expression, this result
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Figure 6.1: The top panel shows the amplitude map in millimeters of the M2 load tide,
the bottom panel shows the corresponding phase map. Note that the load tide extends
beyond the oceanic regions and that the lithosphere also deforms near the coast.
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follows from the convolution integral on the sphere that is evaluated with the help of
spherical harmonics) The essential difference from the formulation of the body tide is that
the spherical harmonic expansion of the ocean tide itself requires terms up to very high
degree n, for adequate definition. Farrell’s (1972) calculations of the load Love numbers,
based on the Gutenberg-Bullen Earth model, are frequently used. Table 6.1 is taken
from [4] and lists a selection of both Farrell’s numbers and those from a more advanced
calculation by [24], based on the PREM model.

Why is it so efficient to consider a spherical harmonic development of the ocean tide
maps? Here we refer to the in-phase or quadrature components of the tide which are both
treated in the same way. The reason is that convolution integrals in the spatial domain
can be solved by multiplication of Green functions coefficients and spherical harmonic
coefficients in the spectral domain. The in-phase or quadrature ocean load tide maps
contained in H(θ, λ) follow then from a convolution on the sphere of the Green function
G(ψ) and an in-phase or quadrature ocean tide height function contained in F (θ, λ), for
details see appendix A.

6.5 Exercises

1. Explain how you would compute the self attraction tide signal provided that the
ocean tide signal is provided.

2. How do you compute the vertical geometric load at the center of a cylinder with a
radius of ψ degrees.

3. Design a Green function to correct observed gravity values for the presence of moun-
tains and valleys, i.e. that corrects for a terrain effect. Implement this Green function
in a method that applies the correction.
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Chapter 7

Altimetry and tides

7.1 Introduction

Satellite altimetry is nowadays an accurate technique whereby height profiles are measured
along satellite tracks over the ocean. Repeated measurement of these height profiles fol-
lowed by a suitable data analysis method provides in principle estimates of the altimetric
tide. One problem is that an altimeter will observe the sum of the solid Earth tide, an
oceanic tide and a load tide. The solid Earth tide can be modelled when the Love numbers
hn are provided. Separating the load tide from the ocean tide requires one to solve an
integral equation. In this chapter we will discuss both issues.

7.2 Aliasing

Tides observed by a satellite altimeter are usually systematically under sampled. The
under sampled diurnal and semi-diurnal frequencies result in alias periods significantly
longer than the natural periods of the tides. Any altimeter satellite has been plagued
by this problem, SEASAT’s lifetime (NASA altimeter, 1978) was too short for doing any
serious tidal analysis, GEOSAT (US Navy altimeter, 1985-1990) had several problems
among which that the M2 tide aliases to a period of about a year and finally ERS-1
(ESA altimeter 1991-1996) is by definition not suited for tidal research because the sun-
synchronous orbit causes all solar tides to be sampled at the same phase.

7.3 Separating ocean tide and load tides

A satellite altimeter will observe the sum of an ocean and a load tide, where the latter is
obtained by convolution with respect to the ocean tide, thus we have:

Sa = So + L(So) (7.1)

where Sa is the tide observed by the altimeter, and where So is a ocean tide. Operator
L() is a convolution integral as explained in chapter 6. In order to obtain ocean and load
tides we have to solve an integral equation. Since L is a linear operator the ocean tide is
obtained by:

So = (I + L)−1Sa (7.2)
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It turns out that there is a fast inversion algorithm capable of inverting this problem
within several iterations

S
(0)
l = L(Sa)

S(0)
o = Sa − S

(0)
l

S
(1)
l = L(S(0)

o )

S(1)
o = Sa − S

(1)
l

S
(2)
l = L(S(1)

o )

S(2)
o = Sa − S

(2)
l

...

This procedure has been used to separate the ocean and load tide from TOPEX/Poseidon
altimetry data.

7.4 Results

To close this chapter on tides we want to mention that the TOPEX/POSEIDON satellite
altimeter mission (NASA/CNES, active since August 1993) has stimulated the develop-
ment of a series of new tide models more accurate than any previous global hydrodynamic
model, see for instance [7]. The main reason for the success of the Topex/Poseidon mis-
sion in modeling the deep ocean tides should be seen in the context of the design of the
mission where the choice of the nominal orbit is such that all main tidal constituents alias
to relatively short periods. A few of the results are tabulated in table 7.1 where the r.m.s.
comparisons to 102 “ground-truth” stations in (cm) are shown. Ocean tides in shallow
coastal areas are not that easily observed with Topex/Poseidon altimetry because of the
non-harmonic response of tides in shallow seas leading to spatial details exceeding the
resolution attainable by the Topex/Poseidon inter track spacing. This behavior was ex-
plained in chapter 4, in particular at the point where the dispersion relation of barotropic
waves was discussed. For shallow seas it is in general better to rely on regional tide/storm
surge models. An example for the North Sea area is the Continental Shelf Model (CSM)
maintained by the RIKZ group, Department of Rijkswaterstaat, Koningskade 4, 2500 EX
Den Haag, The Netherlands.

7.5 Exercises

1. Show that the recursive algorithm to solve eq. (7.2) is valid.

2. What is the aliasing period of the M2 tide when it is observed from the Envisat orbit
which is a 35 day sun-synchronous repeat orbit. Can you also observe the S2 tide
with an altimeter from this orbit?

3. The T/P orbit completes 127 orbital periods in 10 nodal days. Use the J2 gravity
precession equations to find the proper orbital altitude at an inclination of 66 degrees
and an eccentricity of 0.001. What is the ground track repeat time.
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Authors version Q1 O1 P1 K1 N2 M2 S2 K2

Schwiderski 1980 0.34 1.23 0.61 1.44 1.19 3.84 1.66 0.59
Cartwright-Ray 1991 1.22 0.63 1.89 0.96 3.23 2.22
Le Provost et al. meom94.1 0.28 1.04 0.46 1.23 0.87 2.99 1.56 0.50
Egbert et al. tpxo.1 0.96 1.26 2.30 1.55
Egbert et al. tpxo.2 0.29 0.98 0.45 1.32 0.76 2.27 1.26 0.56
Sanchez-Pavlis gsfc94a 0.35 1.06 0.54 1.41 0.86 2.31 1.23 0.66
Ray et al. 1994 0.37 1.00 0.40 1.25 0.81 2.04 1.23 0.51
Schrama-Ray 1993.10 1.15 1.35 2.02 1.26
Schrama-Ray 1994.11 1.02 1.19 0.85 1.85 1.20

Table 7.1: Ground truth comparison at 102 tide gauges, the first two tide models are de-
veloped before Topex/Poseidon. Le Provost et al. ran a global finite element model that
is free from Topex/Poseidon data. Egbert et al., also ran a finite element model while
assimilating Topex/Poseidon data. Sanchez & Pavlis and Ray et al. used so-called Proud-
man functions to model the tides, they did incorporate Topex/Poseidon data. Schrama &
Ray applied a straightforward harmonic analysis to the Topex/Poseidon data to determine
improvements with respect to a number of tidal constituents.

4. Use the answers of the previous question to compute the aliasing period of the M2

and the S2 tide.

5. How much time does it take to disentangle Ssa and K1 from T/P.
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Chapter 8

Tidal Energy Dissipation

8.1 Introduction

This chapter contains background information on energy computations that apply to ocean
tides. The subject of tidal energy dissipation is known for quite some time, a compre-
hensive reference is [16] where the problem is reviewed from a point of view prior to the
refinement of tidal models by TOPEX/POSEIDON altimetry, see [7] [23]. Dissipation
means that potential and kinetic energy in the ocean tides is converted into another form
of energy. Where this process actually occurs and into which form energy is converted are
separate questions.

Basic observations confirming that energy is dissipated in oceanic tides are linked to
the slowdown of Earth rotation, which is about −5 × 10−22rad/s−2, and lengthening of
the distance between the Earth and the Moon by about 3.82 ± 0.07 cm/year, see also [8],
[29], [28] and [16]. The Earth Moon configuration is shown in figure 8.1: According to [28]
the total rate of dissipation due to the Moon is thereby constrained at 3 TW. If we add
the solar tides then the total dissipation becomes 4 TW. For the M2 tide the dissipation
is 2.50 ± 0.05 Terrawatts (TW), see also [8]. In [28] it is suggested that the 2.5 TW is
partially dissipated into body tides by 0.1 TW (according to [22]) and that the remaining
2.4 TW is dissipated in the oceans. For most part this remainder is dissipated by friction
in shallow waters while another part goes into internal wave generation. In [14] one finds
an estimate of 0.7 TW of energy dissipation in the deep oceans at the M2 tide which
is mainly attributed to internal wave generation at sub-surface ridges and at continental
shelf boundaries. The relevance of energy dissipation in the deep oceans is that it is partly
responsible for maintenance of the observed abyssal density stratification. The required
energy to maintain this stratification involves mixing for which [30] estimates that 2 TW
is required. The internal tides are according to [14] now responsible for approximately 1
TW in this process, the remaining part is due to wind effects.

The problem of sketching a complete picture of the dissipation mechanisms is clearly
a multidisciplinary scientific challenge where astronomy, geodesy, physical oceanography
and meteorology come together. Purpose of writing this chapter is to go through the
derivation of the tidal energy equations and to confirm the global dissipation rates in the
oceanic tides from a handful of existing models. We start with the equations of motion
and show the necessary steps to arrive at the energy equation which contain a work term,
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Figure 8.1: In this figure it is shown why the Earth spin rate is slowing down as a result
of the gravitational torque formed by the acceleration vectors a and b. The Moon is also
slowed down by this torque, causing it to move into a direction away from Earth.

a divergence term and a dissipation term. We will integrate this equation over a tidal
cycle and over the oceans to confirm that the dissipation term equals the work term. In
an example we demonstrate that the global dissipation rate at M2 is 2.41 TW for the
GOT99.2 model cf. [23]. The dissipation rates for other waves such as O1 K1 and S2 are
smaller; they are respectively 0.17, 0.33 and 0.43 TW.

The following sections discuss the problem of energy consideration in ocean tides (8.2)
and results for the global tidal energy dissipation problem based upon several tide models
(8.3).

8.2 Tidal energetics

We start with the equations of motion whereby the velocity terms u are averaged over a
water column, see also [1] or eqns (4.23)(a-c):

∂tu+ f × u = −g∇η + ∇Γ − F (8.1)

∂tη = −∇. (uH) (8.2)

In these equations H is the height of the water column, η is the surface elevation, f is
the Coriolis vector, g is the gravitational acceleration, ∇Γ is the acceleration term that
sets water in motion and F contains terms that model the dissipation of energy or terms
that model advection. Essentially the momentum equations (8.1) state that the Coriolis
effect, local gravity and the gradient of the pressure field are balanced while the continuity
equation (8.2) enforces that there are no additional drains and sources.

For tidal problems the forcing function Γ is a summation of harmonic functions de-
pending on σ indicating the frequency of a tidal line. If F is linear, in the sense that we
don’t allow velocity squaring of u and η, while imposing harmonic boundary conditions
at frequency σ then solutions for u and η will also take place at σ. However if F contains
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advective or non-linear frictional terms both causing a velocity squaring effect then the
equations become non-linear so that solutions of u and η will contain other frequencies
being the sums of differences of individual tidal lines. By means of scaling considerations
one can show, see [4], that such non-linearities only play a marginal role and that they
are only significant in coastal seas. An example is the overtone of M2 (called M4) which
is small in the open oceans, see also chapter 4.

In [2] we find that the energy equation is obtained by multiplying the momentum
equations (8.1) times ρHu and the continuity equation (8.2) times gρη with ρ representing
the mean density of sea water. (Unless it is mentioned otherwise we assume that ρ = ρw).
As a result we obtain:

∂t

(
1

2
ρH(u2 + v2) +

1

2
gρη2

)
= −gρH∇. (uη) + ρHu.∇Γ − ρHu.F (8.3)

where we used the property ∇ (ab) = a∇b + b∇a. In the following we evaluate the time
average over a tidal period by integrating all terms in eq. (8.3) over a tidal period T where
T = 2π/σ. In order to condense typesetting a new notation is introduced:

< F > =
1

T

∫ t=T+c

t=c
F (t) dt

where we remind that:

< ∂t

(
1

2
ρH(u2 + v2) +

1

2
gρη2

)
> = 0

due to the fact that u = (u, v) and η are harmonic functions. (Note: formally the continuity
equation should contain a term H + η instead of just H, yet η ≪ H so that the effect
can be ignored in the computations.) Characteristic in the discussion of the tidal energy
equation is that the averaging operator will not cancel the remaining terms in eq. (8.3).
We obtain:

< W > + < P > = < D > (8.4)

where < W > is the gravitational input or work put into the tides:

< W > = ρH < u.∇Γ >

with < P > denoting the divergence of energy flux with:

< P > = −gρH∇. < u η >

The dissipation of energy < D > is entirely due to F :

< D > = ρH < u.F >

To obtain the rate at which tidal energy is dissipated eq. (8.4) must be integrated locally
over a patch of ocean or globally over the entire oceanic domain, see also [2] [4] [14] [16]
[28].
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8.2.1 A different formulation of the energy equation

Let η be the oceanic tide, ηe the equilibrium tide and ηsal the self-attraction and loading
tide and U the volume transport then, cf. [14]:

< D >= −gρ∇. < Uη > +gρ < U∇ηe > +gρ < U∇ηsal >

where U = Hu and
ηe = g−1

∑

n

(1 + kn − hn)Ua
n

with Ua
n denoting the astronomical tide potential and hn and kn Love numbers for the

geometric radial deformation and the induced potential that accompanies this deformation.
The self-attraction and loading tide ηsal is:

ηsal = g−1
∑

nma

(1 + k′n − h′n)
3(ρw/ρe)

(2n + 1)
ηnmaYnma(θ, λ)

where ρe is the mean density of the Earth while h′n and k′n are loading Love numbers.
In this equation ηnma are spherical harmonic coefficients of the ocean tide elevation field
and Ynma(θ, λ) spherical harmonic functions. To avoid confusion we mention that our
normalization procedures are chosen such that:

∫

Ω
Y 2

nma(θ, λ) dΩ = 4π

where

Ynma(θ, λ) =

{
cos(mλ)Pnm(cos θ) : a = 0
sin(mλ)Pnm(cos θ) : a = 1

with λ and θ denoting the geographic longitude and co-latitude.

8.2.2 Integration over a surface

So far the tidal energy equation (8.4) applies to a local patch of ocean. If we are interested
in a dissipation rate over a domain Ω then it is necessary to evaluate the surface integral.
For the work integral we can use the property:

̂< W > =

∫

Ω
ρH < u.∇Γ > dΩ =

∫

Ω
< ρH∇.(uΓ) > dΩ−

∫

Ω
< ρHΓ∇.u > dΩ (8.5)

where the continuity equation ∇.(uH) = −∂tη applies to the second integral on the hand
side. After integrating all terms we get:

̂< W1 > + ̂< W2 > + ̂< P > = ̂< D > (8.6)

where:
̂< W1 > =

∫

Ω
< ρΓ

∂η

∂t
> dΩ (8.7)

̂< W2 > =

∫

Ω
< ρ∇.(HuΓ) > dΩ (8.8)
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̂< P > =

∫

Ω
< −gρ∇.(Huη) > dΩ (8.9)

For completeness it should be mentioned that the surface integrals for ̂< W2 > and ̂< P >
may be replaced by line integrals over an element ds along the boundary of Ω, cf. [2]:

̂< W2 > =

∮

∂Ω
< ρΓH(u.n) > ds (8.10)

and
̂< P > =

∮

∂Ω
< −gρ η H(u.n) > ds (8.11)

where n is a vector perpendicular to ∂Ω.

8.2.3 Global rate of energy dissipation

In case the global oceans are our integration domain we can assume that ̂< W2 > = 0 and
̂< P > = 0 since the corresponding surface integrals can be written as line integrals along

the boundary ∂Ω where we know that the condition (u.n) = 0 applies. The conclusion is
that the global dissipation rate can be derived by ̂< D > = ̂< W1 >, meaning that we
only require knowledge of the function Γ and the ocean tide elevation field η.

Spherical harmonics

At this point it is convenient to switch to spherical harmonic representations of all rele-
vant terms that are integrated in the work integral because of orthogonality properties,
see also [16]. A convenient representation of the oceanic tidal elevation field η is a series of
global grids whereby an in-phase and a quadrature version are provided for a selected num-
ber of waves in the diurnal and semi-diurnal frequency band. The problem of representing
η can be found in [4] where it is shown that:

η(θ, λ, t) =
∑

σ

fσ [Pσ(θ, λ) cos(σ(t) − uσ) +Qσ(θ, λ) sin(σ(t) − uσ)] (8.12)

The definitions of fσ and uσ are related to the effect of side lines modulating the main
wave. In the following discussion we will ignore the effect of fσ and uσ (ie. fσ = 1 and
uσ = 0) and assume that their contribution can be neglected in the evaluation of the
energy equation. In essence this assumption says that we convert the formal definition of
a tidal constituent into that of a single wave at frequency σ.

Prograde and retrograde waves

To appreciate the physics of tidal energy dissipation [16] presents a wave splitting method.
The essence of this method is that we get prograde and retrograde waves which are con-
structed from the spherical harmonic coefficients of Pσ and Qσ in eq. (8.12) at a given
frequency σ. To retrieve both wave types we develop Pσ and Qσ in spherical harmonics:

Pσ =
∑

nm

[anm cosmλ+ bnm sinmλ]Pnm(cos θ) (8.13)

Qσ =
∑

nm

[cnm cosmλ+ dnm sinmλ]Pnm(cos θ) (8.14)
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to arrive at:

η(θ, λ, t) =
∑

nmσ

[
D+

nm cos(σ(t) +mλ− ψ+
nm) +D−

nm cos(σ(t) −mλ− ψ−

nm)
]
Pnm(cos θ)

(8.15)
with:

D±

nm cos(ψ±

nm) =
1

2
(anm ∓ dnm) (8.16)

D±

nm sin(ψ±

nm) =
1

2
(cnm ± bnm) (8.17)

In this notation the wave selected with the + sign is prograde; it is a phase locked wave
that leads the astronomical bulge with a certain phase lag. The second solution indicated
with the − sign is a retrograde wave that will be ignored in further computations. From
here on D+

nm and ψ+
nm are the only components that remain in the global work integral

< Ŵ1 >.
Tables of spherical harmonic coefficients and associated prograde and retrograde am-

plitudes and phase lags exist for several ocean tide solutions, see also [23] who provides
tables of 4 diurnal waves Q1 O1 P1 K1 and 4 semi-diurnal waves N2 M2 S2 K2. The
required D±

nm and ψ±
nm terms are directly derived from the above equations, all be it that

our spherical harmonic coefficients bnm and dnm come with a negative sign compared to
[23].

Analytical expression for the global rate of dissipation

In the following we will apply the coefficients anm through dnm in eqns. (8.13) and (8.14)
in the evaluation of eq.(8.7). We require the time derivative of the tidal elevation field and
the Γ function, a discussion of both terms and their substitution in eq.(8.7) is discussed
below.

Forcing function

For the forcing function Γ we know that it is directly related to the astronomical tide
generation function Ua

n and secondary potentials that follow from the self attraction and
loading tide:

Γ = g (ηe + ηsal) (8.18)

However from this point on we concentrate of the ηe term assuming that the ηsal term
is smaller. The justification for the using Γ = g ηe is that the an equilibrium ocean tide
should be achieved in case there are no tidal currents u and terms F , see also eq. (8.1).
In addition we know from [4] that for all dominant tidal waves we always deal with n = 2
and m = 1 for the diurnal cases and m = 2 for the semi-diurnal cases. According to [4]
the expression for Ua

2 for a diurnal wave at frequency σ with (n+m) : odd is:

Ua
n=2 = A

σ
21P 21(cos θ) sin(σ(t) +mλ) (8.19)

while the expression for Ua
2 for a semi-diurnal wave at frequency σ with (n+m) : even is:

Ua
n=2 = A

σ
22P 22(cos θ) cos(σ(t) +mλ) (8.20)
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Time derivative of the elevation field

The ∂tη term in the < Ŵ1 > integral is defined on basis of the choice of σ where we will
only use the prograde component:

∂η

∂t
= −σ

∑

nma

D+
nm sin(σ(t) +mλ− ψ+

nm)Pnm(cos θ) (8.21)

Phase definitions of the ocean and the astronomical tide generating potential are both
controlled by the expression σ(t) and the geographic longitude λ. Due to the fact that we
average over a full tidal cycle T it doesn’t really matter in which way σ(t) is defined as
long as it is internally consistent between ∂tη and Γ.

Result

We continue with the evaluation of m = 1 for diurnal waves and m = 2 for semi-diurnal
waves and get:

̂< D > =

∫

Ω
< ρΓ

∂η

∂t
> dΩ = WnmσD

+
2m

[
− cosψ+

2m

+ sinψ+
2m

]
(8.22)

with Wnmσ = 4πR2ρ(1 + k2 − h2)σA
σ
2m where R is the mean Earth radius and whereby

− cosψ+
2m is evaluated for the diurnal tides and the sinψ+

2m for the semi diurnal tides. We
remind that eq. (8.22) matches eq.(4.3.16) in [16]. The diurnal equivalent does however
not appear in this reference and phase corrections of ±π/2 should be applied. In addition
we notice that we did not take into account the effect of self attraction and loading tides
in the evaluation of the global dissipation rates although this effect is probably smaller
than the oceanic effect. The closed expression for the self attraction and loading effect is:

̂< D > = WnmσD
+
2m

3(1 + k′2 − h′2)ρw

5ρe

[
− cosψ+

2m

sinψ+
2m

]
(8.23)

which follows the same evaluation rules as eq.(8.22).

8.3 Global dissipation rates

We computed the global dissipation rates for eight tidal constituents which are considered
to be energetic, meaning that their harmonic coefficients stand out in the tide generating
potential. The rates corresponding to eqn. (8.22) for the diurnal constituents Q1, O1, P1

and K1 and the semi-diurnal constituents N2 M2 S2 and K2 are shown in table 8.1. For
ρ we have used 1026 kg/m3, h2 = 0.606, k2 = 0.313 and R = 6378.137 km.

The models in table 8.1 are selected on basis of several criteria. The main criteria are
availability of the model, its ability to provide a global coverage of the oceans, documen-
tation on the method to retrieve the in-phase and quadrature coefficient maps from the
data.
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Q1 O1 P1 K1 N2 M2 S2 K2

SW80 0.007 0.176 0.033 0.297 0.094 1.896 0.308 0.024
FES94.1 0.007 0.174 0.035 0.321 0.097 2.324 0.350 0.027
FES95.2 0.007 0.186 0.035 0.310 0.111 2.385 0.390 0.027
FES99 0.008 0.185 0.033 0.299 0.109 2.438 0.367 0.028
SR950308 0.006 0.150 0.028 0.233 0.112 2.437 0.434 0.027
SR950308c 0.007 0.180 0.034 0.288 0.114 2.473 0.435 0.027
GOT99.2 0.008 0.181 0.032 0.286 0.110 2.414 0.428 0.029
TPXO5.1 0.008 0.186 0.032 0.293 0.110 2.409 0.376 0.030
NAO99b 0.007 0.185 0.032 0.294 0.109 2.435 0.414 0.035
CSR40 0.008 0.181 0.031 0.286 0.111 2.425 0.383 0.028

Mean 0.007 0.179 0.032 0.290 0.109 2.416 0.397 0.029
Sigma 0.001 0.012 0.002 0.024 0.005 0.042 0.031 0.002

Table 8.1: Dissipation rates of 10 tide models, the model labels are explained in the text,
the average and standard deviations are computed over all models except SW80, units:
Terrawatts

8.3.1 Models

The SW80 and the FES94.1 models did not rely on altimeter data and may be seen as
purely hydrodynamic estimates of the ocean tides. The SW80 model is described in [9],
[10] and [11] and is often referred to as the Schwiderski model providing at its time the
first realistic hydrodynamic estimate of the ocean tides obtained by solving the Laplace
tidal equations. An more modern version is the FES94.1 model. It is a finite element
solution (FES) with the ability to follow the details of the tides in shallow waters. Version
94.1 is documented in the JGR Oceans special volume on the Topex/Poseidon altimetry
system, see [17]. The FES95.2 model is a refinement of the FES94.1 model that relies
on the representer technique described by [13] to assimilate TOPEX/Poseidon altimetry
data. The FES99 model is new version of the FES95.2 model that incorporates a larger
time span of the T/P data which comes in the form of spatially filtered altimetry data at
a number of crossover locations. The FES99 model assimilates both T/P crossover data
and tide gauge data.

In table 8.1 there are four empirical tide models that heavily rely on tidal constants
directly estimated from the T/P altimeter data set. The SR950308 model is an updated
version of the method documented by [7] and is based upon a local harmonic improvement
of the in-phase and quadrature components relative to a background ocean tide model.
Thereby it relies on the availability of T/P data an not so much on model dynamics.
In the above table the SR950308 model is evaluated within latitude bands that follow
from the orbit inclination of T/P. The SR950308c model is an identical version that is
complemented by SW80 tidal constants outside the range of the SR950308 model. Both
the SR models are based upon cycles 2 to 71 of T/P altimetry. Another empirical model
is the GOT99.2 model that is documented in [23]. It is based on the same technique as
described in [7] and can be seen as an update to the earlier approach in the sense that
232 TOPEX cycles are used rather than the 70 cycles available at the time the SR950308

52



model was developed.
The CSR4.0 model falls essentially in the same category of methods as the SR950308

and the GOT99.2 model. In essence it is an empirical estimation technique and an up-
date to the CSR3.0 model documented in cf. [20]. The CSR4.0 model is based upon an
implementation of a spectral response method that involves the computation of orthotides
as described in the paper of [15]. Spectral response models enable to incorporate the
effects of minor tidal lines in the calculation without separately estimating the individual
harmonic coefficients of those lines. Without doubt this procedure relaxes the parameter
estimation effort. A drawback of the used orthotide method is that resonance effects or
energy concentrated at tidal cusps in the tides leak to neighboring lines.

Two other models that we included in table 8.1 are TPXO5.1 and NAO99b. The
TPXO5.1 model is based upon the representer approach as described in [12] whereby
TOPEX/POSEIDON crossover data is assimilated in the solution. It differs from the
FES95.2 and FES99 models; the method of discretization and dynamical modelling are
set-up in different ways. The NAO99b model, cf. [26], is also based upon a data assimilation
technique. In this case a nudging technique rather than a representer technique is used.

8.3.2 Interpretation

Table 8.1 shows that most dissipation rates of the selected tide models differ by about 2%.
The average global dissipation rate ofM2 is now 2.42 TW and its standard deviation is 0.04
TW. The SW80 and the FES94.1 models are the only two exceptions that underestimate
the M2 dissipation by respectively 0.5 and 0.1 TW. In [4] it is mentioned that this behavior
is typical for most hydrodynamic models which depend for their dissipation rates on the
prescribed drag laws in the model. All other post T/P models handle this problem in a
different way, and are based upon assimilation techniques.

Other tidal constituents that stand out in the dissipation computations are O1 K1 and
S2. For the latter term it should be remarked that energy is not only dissipated in the
ocean, but also in the atmosphere. This can be confirmed by comparing the S2 dissipation
to an independent geodetic estimate from satellite geodesy.

8.4 Exercises

• Why does orbital analysis of Lageos and Starlette give us a different value for the
dissipation on S2 compared to dissipation estimates from altimetry

• Is there an age limit on our solar system given the current rate tidal energy dissipa-
tion?

• How would you measure the rate of energy dissipation for M2 in the North sea if
transport measurements are provided at the boundary of a model for the North sea,
and if tidal constants for η are provided within the numerical box?
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Appendix A

Legendre Functions

Legendre functions appear when we solve the Laplace equation (∇U = 0) by means of
the method of separation of variables. Normally the Laplace equation is transformed in
spherical coordinates r, λ, θ (r: radius, λ: longitude θ: co-latitude); this problem can be
found in section 10.8 in [3] where the well known solution for this problem is shown:

U(r, λ, θ) = R(r)G(λ, θ) (A.1)

with:

R(r) = c1r
n + c2

1

rn+1
(A.2)

and where c1 and c2 are integration constants. Solutions of G(λ, θ) appear in a further
separation of variables, these solutions are called surface harmonics and in [3] you will find
that:

G(λ, θ) = [Anm cos(mλ) +Bnm cos(mλ)]Pnm(cos θ) (A.3)

where also Anm and Bnm are integration constants. The Pnm(cos θ) functions are called
associated Legendre functions and the indices n and m are called degree and order. When
m = 0 we deal with zonal Legendre functions and for m = n we are dealing with sectorial
Legendre functions, all others are tesseral Legendre functions. The following table contains
zonal Legendre functions up to degree 5 whereby Pn(cos θ) = Pn0(cos θ):

P0(cos θ) = 1

P1(cos θ) = cos θ

P2(cos θ) =
3 cos 2θ + 1

4

P3(cos θ) =
5 cos 3θ + 3cos θ

8

P4(cos θ) =
35 cos 4θ + 20 cos 2θ + 9

64

P5(cos θ) =
63 cos 5θ + 35 cos 3θ + 30 cos θ

128

Associated Legendre functions are obtained by differentiation of the zonal Legendre func-
tion, in particular:

Pnm(t) = (1 − t2)m/2 d
mPn(t)

dtm
(A.4)
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so that you obtain:

P11(cos θ) = sin θ

P21(cos θ) = 3 sin θ cos θ

P22(cos θ) = 3 sin2 θ

P31(cos θ) = sin θ

(
15

2
cos2 θ − 3

2

)

P32(cos θ) = 15 sin2 θ cos θ

P32(cos θ) = 15 sin3 θ

Legendre functions are orthogonal base functions in an L2 function space whereby the
inner product is defined as:

∫ 1

−1
Pn′(x)Pn(x) dx = 0 n′ 6= n (A.5)

and ∫ 1

−1
Pn′(x)Pn(x) dx =

2

2n+ 1
n′ = n (A.6)

In fact, these integrals are definitions of an inner product of a function space whereby
Pn(cos θ) are the base functions. Due to orthogonality we can easily develop an arbitrary
function f(x) for x ∈ [−1, 1] into a so-called Legendre function series:

f(x) =
∞∑

n=0

fnPn(x) (A.7)

The question is to obtain the coefficients fn when f(x) is provided in the interval x ∈
[−1, 1]. To demonstrate this procedure we integrate on the right and left hand side of
eq. A.7 as follows:

∫ 1

−1
f(x)Pn′(x) dx =

∫ 1

−1

∞∑

n=0

fnPn(x)Pn′(x) dx (A.8)

Due to the orthogonality relation of Legendre functions this right hand side integral reduces
to an answer that only exists for n = n′:

∫ 1

−1
f(x)Pn(x) dx =

2

2n+ 1
fn (A.9)

so that:

fn =
2n+ 1

2

∫ 1

−1
f(x)Pn(x) dx (A.10)

This formalism may be expanded in two dimensions where we now introduce spherical
harmonic functions:

Ynma(θ, λ) =

{
cosmλ
sinmλ

}a=1

a=0

Pnm(cos θ) (A.11)
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which are related to the associated Legendre functions. In turn spherical harmonic func-
tions possess orthogonal relations which become visible when we integrate on the sphere,
that is: ∫ ∫

σ
Ynma(θ, λ)Yn′m′a′(θ, λ) dσ =

4π(n+m)!

(2n+ 1)(2 − δ0m)(n −m)!
(A.12)

but only when n = n′ and m = m′ and a = a′.
Spherical harmonic functions Ynma(θ, λ) are again basis functions of a function space

whereby integral A.12 defines the inner product of the function space. We remark that
spherical harmonic functions form an orthogonal set of basis functions since the answer of
integral A.12 depends on degree n and the order m.

In a similar fashion spherical harmonic functions allow to develop an arbitrary function
over the sphere in a spherical harmonic function series. Let this arbirary function be called
f(θ, λ) and set as goal to find the coefficients Cnma in the series:

f(θ, λ) =
∞∑

n=0

n∑

m=0

1∑

a=0

CnmaYnma(θ, λ) (A.13)

This problem can be treated in the same way as for the zonal Legendre function problem,
in fact, it is a general approach that may be taken for the subset of functions that can be
developed in a series of orthogonal (or orthonomal) base functions. Thus:

∫ ∫

σ
Yn′m′a′(θ, λ)f(θ, λ) dσ =

∫ ∫

σ
Yn′m′a′(θ, λ)

∞∑

n=0

n∑

m=0

1∑

a=0

CnmaYnma(θ, λ) dσ (A.14)

which is only relevant when n = n′ and m = m′ and a = a′. So that:

Cnma = N−1
nm

∫ ∫

σ
Ynma(θ, λ)f(θ, λ) dσ (A.15)

where

Nnm =
4π(n +m)!

(2n + 1)(2 − δ0m)(n−m)!
(A.16)

A.1 Normalization

Normalization of Legendre functions is a separate issue that follows from the fact that
we are dealing with an orthogonal set of functions. There are several ways to normalize
Legendre functions, one choice is to rewrite integral Eq. A.12 into a normalized integral:

1

4π

∫ ∫

σ
Y nma(θ, λ)Y n′m′a′(θ, λ) dσ = 1 (A.17)

where we simply defined new normalized functions with an overbar which are now called
the normalized spherical harmonic functions. It is obvious that they rely on normalized
associated Legendre functions:

Pnm(cos θ) =

[
(2n+ 1)(2 − δ0m)

(n −m)!

(n +m)!

]1/2

Pnm(cos θ) (A.18)
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The use of normalized associated Legendre functions results now in an orthonormal set
of spherical harmonic base functions as can be seen from the new definition of the inner
product in eq. A.17. It is customary to use the normalized functions because of various
reasons, a very important numerical reason is that stable recursive schemes for normalized
associated Legendre functions exist whereas this is not necessarily the case for the un-
normalized Legendre functions. This problem is beyond the scope of these lecture notes,
the reader must assume that there is software to compute normalized associated Legendre
functions up to high degree and order.

A.2 Some convenient properties of Legendre functions

A.2.1 Property 1

A well-known property that we often use in potential theory is the development of the
function 1/r in a series of zonal Legendre functions. We need to be a bit more specific on
this problem. Assume that there are two vectors p and q and that their length is rp and
rq respectively. If the length of the vector p− q is called rpq then:

rpq =
(
r2p + r2q − 2rprq cosψ

)1/2
(A.19)

for which it is known that:

1

rpq
=

1

rq

∞∑

n=0

(
rp
rq

)n

Pn(cosψ) (A.20)

where ψ is the angle between p and q. This series is convergent when rp < rq. The proof
for this property is given in [21] and starts with a Taylor expansion of the test function:

rpq = rp
(
1 − 2su+ s2

)1/2
(A.21)

where s = rq/rp and u = cosψ. The binomial theorem, valid for |z| < 1 dictates that:

(1 − z)−1/2 = α0 + α1z + α2z
2 + ... (A.22)

where α0 = 1 and αn = (1.3.5...(2n − 1))/(2.4...(2n)). Hence if |2su− s2| < 1 then:

(1 − 2su+ s2)−1/2 = α0 + α1(2su− s2) + α2(2su− s2)2 + ... (A.23)

so that:

(1 − 2su+ s2)−1/2 = 1 + us+
3

2
(u2 − 1

3
)s2 + ...

= P0(u) + sP1(u) + s2P2(u) + ...

which completes the proof.
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A.2.2 Property 2

The addition theorem for Legendre functions is:

Pn(cosψ) =
1

2n+ 1

∑

ma

Y nma(θp, λp)Y nma(θq, λq) (A.24)

where λp and θp are the spherical coordinates of vector p and λq and θq the spherical
coordinates of vector q.

A.2.3 Property 3

The following recursive relations exist for zonal and associated Legendre functions:

Pn(t) = −n− 1

n
Pn−2(t) +

2n − 1

n
tPn−1(t) (A.25)

Pnn(cos θ) = (2n − 1) sin θPn−1,n−1(cos θ) (A.26)

Pn,n−1(cos θ) = (2n− 1) cos θPn−1,n−1(cos θ) (A.27)

Pnm(cos θ) =
(2n− 1)

n−m
cos θPn−1,m(cos θ) − (n +m− 1)

n−m
Pn−2,m(cos θ) (A.28)

Pn,m(cos θ) = 0 for m > n (A.29)

For differentiation the following recursive relations exist:

(t2 − 1)
dPn(t)

dt
= n (tPn(t) − Pn−1(t)) (A.30)

A.3 Convolution integrals on the sphere

Spherical harmonic function expansions are very convenient for the evaluation of the fol-
lowing type of convolution integrals on the sphere:

H(θ, λ) =

∫

Ω
F (θ′, λ′)G(ψ) dΩ (A.31)

where dΩ = sinψ dψ dα and ψ the spherical distance between θ, λ and θ′, λ′ and α the
azimuth. In eq. (A.31) the F and G function are written as:

F (θ, λ) =
∞∑

n=0

n∑

m=0

1∑

a=0

FnmaY nma(θ, λ) (A.32)

where

Y nm,0(θ, λ) = cos(mλ)Pnm(cos θ)

Y nm,1(θ, λ) = sin(mλ)Pnm(cos θ)

and

G(ψ) =
∞∑

n=0

GnPn(cosψ) (A.33)
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It turns out that instead of numerically computing the expensive surface integral in
eq. (A.31) that it is easier to multiply the Gn and Fnma coefficients:

H(θ, λ) =
∞∑

n=0

n∑

m=0

1∑

a=0

HnmaY nma(θ, λ) (A.34)

where

Hnma =
4πGn

2n+ 1
Fnma (A.35)

A.3.1 Proof

For completeness we also present the proof of eq. (A.35): The addition theorem of Legendre
functions states that:

Pn(cosψpq) =
1

2n+ 1

n∑

m=0

Pnm(cos θp)P nm(cos θq) cos(m(λp − λq)) (A.36)

which is equal to

Pn(cosψpq) =
1

2n+ 1

n∑

m=0

1∑

a=0

Y nm(θp, λp)Y nm(θq, λq) (A.37)

If this property is substituted in eq. (A.31) then:

H(θ, λ) =

∫

Ω

{∑

nma

FnmaY nma(θ
′, λ′)

}{ ∑

n′m′a′

Gn′

2n′ + 1
Y n′m′a′(θ, λ)Y n′m′a′(θ′, λ′)

}
dΩ

(A.38)
which is equal to:

H(θ, λ) =
∑

n′m′a′

Gn′

2n′ + 1
Y n′m′a′(θ, λ)

∑

nma

Fnma

∫

Ω
Y nma(θ

′, λ′)Y n′m′a′(θ′, λ′) dΩ (A.39)

Due to orthogonality properties of normalized associated Legendre functions we get the
desired relation:

H(θ, λ) =
∑

nma

4πGn

2n+ 1
FnmaY nma(θ, λ) (A.40)

which completes our proof.
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Appendix B

Tidal harmonics

Section 2.3.1 introduced the concept of tidal harmonics. Purpose of this section is to
present the implementation of a method to obtain the tables and to present the results. The
method used here to compute tidal harmonics in Cartwright Tayler and Edden differs from
the approach used in this lecture notes. In contrast to CTE, who used several convolution
operators to separate tidal groups. Here we rely on an algorithm that assumes a least
squares fitting procedure and prior knowledge of all Doodson numbers in the summation
over all frequencies indicated by index v. To obtain the tidal harmonic coefficients H(v)

for each Doodson number the following procedure is used:

• For each degree n and tidal species m (which equals k1) the algorithm starts to
collect all matching Doodson numbers.

• The following step is to generate values of:

Ua
nm(t) =

µb(re/reb(t))
n

(2n + 1)reb(t)
× Pnm(cos θb(t)) × cos(mλb(t))

where t is running between 1990/1/1 00:00 and 2010/1/1 00:00 in a sufficiently dense
number of steps to avoid under sampling. Positions of Sun and Moon obtained from
a planetary ephemeris model are used to compute the distance Reb(t) between the
astronomical body (indicated by subscript b) and the Earth’s center (indicated by
subscript e) are transformed into Earth-fixed coordinates to obtain θb(t) and λb(t).

• The following step is a least squares analysis of Unm(t) where the observations equa-
tions are as follows:

Ua
nm(t) =

∑

v′

G(v′) cos(Xv′)

when m+ n is even and

Ua
nm(t) =

∑

v′

G(v′) sin(Xv′)

whenever m+n is odd. The v′ symbol is used to indicate that we are only considering
the appropriate subset of Doodson numbers to generate the Xv′ values, see also
section 2.3.1.
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• Finally the Gv′ values need a scaling factor to convert them into numbers that have
the same dimension as one finds in CTE. Partly this conversion is caused by a
different normalization between surface harmonics used in CTE and eqns. (2.13),
(2.14) and (2.15) here, although is it also required to take into account the factor g.
As a result:

Hv′ = Gv′g−1f−1
nmΠ2

nm

where Πnm is the normalization factor as used in appendix A and fnm the normal-
ization factor used by CTE given in eqns. (2.16) and (2.17). In our algorithm g is
computed as µ/r2e where µ = 3.9860044 × 1014 [m3/s2] and re = 6378137.0 [m].

For all collected spectral lines we show in table B.1 and B.2 only those where |H(v)| exceeds
the value of 0.0025. Tables B.1 and B.2 show in columns 2 to 7 the values of k1 till k6,
in column 8 the degree n, in column 9 the coefficient Hv in equations (2.14) and (2.15),
in column 10 the Darwin symbol provided that it exists, and in column 11 the Doodson
number.

Some remarks about the tables: a) The tables only hold in the time period indicated
earlier in this chapter, b) There are small differences, mostly in the 5th digit behind the
period, with respect to the values given in [4], c) In total we have used 484 spectral lines
although many more tidal lines may be observed with a cryogenic gravimeter.
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k1 k2 k3 k4 k5 k6 n H(v) Darwin Doodson

1 0 0 0 0 0 0 2 -.31459 M0 + S0 055.555
2 0 0 0 0 1 0 2 .02793 055.565
3 0 0 1 0 0 -1 2 -.00492 Sa 056.554
4 0 0 2 0 0 0 2 -.03099 Ssa 057.555
5 0 1 -2 1 0 0 2 -.00673 063.655
6 0 1 0 -1 -1 0 2 .00231 065.445
7 0 1 0 -1 0 0 2 -.03518 Mm 065.455
8 0 1 0 -1 1 0 2 .00228 065.465
9 0 2 -2 0 0 0 2 -.00584 073.555

10 0 2 0 -2 0 0 2 -.00288 075.355
11 0 2 0 0 0 0 2 -.06660 Mf 075.555
12 0 2 0 0 1 0 2 -.02761 075.565
13 0 2 0 0 2 0 2 -.00258 075.575
14 0 3 -2 1 0 0 2 -.00242 083.655
15 0 3 0 -1 0 0 2 -.01275 085.455
16 0 3 0 -1 1 0 2 -.00529 085.465
17 0 4 -2 0 0 0 2 -.00204 093.555
18 1 -3 0 2 0 0 2 .00664 125.755
19 1 -3 2 0 0 0 2 .00801 σ1 127.555
20 1 -2 0 1 -1 0 2 .00947 135.645
21 1 -2 0 1 0 0 2 .05019 Q1 135.655
22 1 -2 2 -1 0 0 2 .00953 ρ1 137.455
23 1 -1 0 0 -1 0 2 .04946 145.545
24 1 -1 0 0 0 0 2 .26216 O1 145.555
25 1 -1 2 0 0 0 2 -.00343 147.555
26 1 0 0 -1 0 0 2 -.00741 155.455
27 1 0 0 1 0 0 2 -.02062 M1 155.655
28 1 0 0 1 1 0 2 -.00414 155.665
29 1 0 2 -1 0 0 2 -.00394 157.455
30 1 1 -3 0 0 1 2 .00713 π1 162.556
31 1 1 -2 0 0 0 2 .12199 P1 163.555
32 1 1 -1 0 0 1 2 -.00288 S1 164.556
33 1 1 0 0 -1 0 2 .00730 165.545
34 1 1 0 0 0 0 2 -.36872 K1 165.555

Table B.1: Tidal harmonic constants
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k1 k2 k3 k4 k5 k6 n H(v) Darwin Doodson

35 1 1 0 0 1 0 2 -.05002 165.565
36 1 1 1 0 0 -1 2 -.00292 ψ1 166.554
37 1 1 2 0 0 0 2 -.00525 φ1 167.555
38 1 2 -2 1 0 0 2 -.00394 τ1 173.655
39 1 2 0 -1 0 0 2 -.02062 J1 175.455
40 1 2 0 -1 1 0 2 -.00409 175.465
41 1 3 -2 0 0 0 2 -.00342 183.555
42 1 3 0 0 0 0 2 -.01128 OO1 185.555
43 1 3 0 0 1 0 2 -.00723 185.565
44 1 4 0 -1 0 0 2 -.00216 195.455
45 2 -3 2 1 0 0 2 .00467 227.655
46 2 -2 0 2 0 0 2 .01601 2N2 235.755
47 2 -2 2 0 0 0 2 .01932 µ2 237.555
48 2 -1 0 1 -1 0 2 -.00451 245.645
49 2 -1 0 1 0 0 2 .12099 N2 245.655
50 2 -1 2 -1 0 0 2 .02298 ν2 247.455
51 2 0 -1 0 0 1 2 -.00217 254.556
52 2 0 0 0 -1 0 2 -.02358 255.545
53 2 0 0 0 0 0 2 .63194 M2 255.555
54 2 1 -2 1 0 0 2 -.00466 263.655
55 2 1 0 -1 0 0 2 -.01786 L2 265.455
56 2 1 0 1 0 0 2 .00447 265.655
57 2 2 -3 0 0 1 2 .01719 T2 272.556
58 2 2 -2 0 0 0 2 .29401 S2 273.555
59 2 2 -1 0 0 -1 2 -.00246 274.554
60 2 2 0 0 0 0 2 .07992 K2 275.555
61 2 2 0 0 1 0 2 .02382 275.565
62 2 2 0 0 2 0 2 .00259 275.575
63 2 3 0 -1 0 0 2 .00447 285.455
64 0 1 0 0 0 0 3 -.00375 065.555
65 1 0 0 0 0 0 3 .00399 155.555
66 2 -1 0 0 0 0 3 -.00389 245.555
67 2 1 0 0 0 0 3 .00359 265.555
68 3 -1 0 1 0 0 3 -.00210 345.655
69 3 0 0 0 0 0 3 -.00765 355.555

Table B.2: Tidal harmonic constants
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