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If there is one thing that we understand very well about 
our solar system, then it is the way planets, moons, 

comets and asteroids move around.





Overview

– The two-body problem
– The three-body problem
– Hill equations
– ‘Planetary’ perturbations and resonances  
– Long term stability of orbits
– Orbits about an oblate planet
– Tides in the solar system
– Dissipative forces and the orbits of small 

particles



The two-body problem
• What defines the problem?

– A large planet and a smaller satellite

• Different views on the solar system
– Nicolaus Copernicus
– Tycho Brahe 
– Johannes Kepler

• Kepler’s laws on orbit motions
– Elliptical orbits within an orbital plane
– Equal area law
– Scale vs orbital period law

• Equations of Motion



Copernicus, Brahe and Kepler
• In the 16th century, the Polish astronomer Nicolaus

Copernicus replaced the traditional Earth-centered view of 
planetary motion with one in which the Sun is at the center 
and the planets move around it in circles. 

• Although the Copernican model came quite close to 
correctly predicting planetary motion, discrepancies existed. 

• This became particularly evident in the case of the planet 
Mars, whose orbit was very accurately measured by the 
Danish astronomer Tycho Brahe

• The problem was solved by the German mathematician 
Johannes Kepler, who found that planetary orbits are not 
circles, but ellipses. 

• Johannes Kepler described the observed planetary motions 
with the three well-known Keplerian laws.



Keplerian Laws
• Law I

– Each planet revolves around the Sun in an 
elliptical path, with the Sun occupying one of 
the foci of the ellipse.

• Law II
– The straight line joining the Sun and a 

planet sweeps out equal areas in equal 
intervals of time. 

• Law III
– The squares of the planets' orbital periods 

are proportional to the cubes of the semi-
major axes of their orbits.



Kepler’s first law
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• e=0, circle

• 0<e<1, ellipse

• e=1, parabola

• e>1, hyperbola
focal point ellipse

Figure center of ellipse
(irrelevant for mechanics)



In-plane Kepler parameters
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Kepler’s second law
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Kepler’s Third law
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The variable n represents the mean motion in radians per 
second, a is the semi-major axis, G is the gravitational 
constant, M is the mass of the “Sun”, m is the mass of the 
satellite (m << M) and T is the orbital period of the satellite

In astronomy this law provides the scale of the Solar System, 
we can observe rather precisely the orbital periods of planets, 
and from this information we can infer the scale of the solar 
system. Everything is then normalized to the Earth’s orbital 
radius, which is said to be 1 astronomical unit (1 AU)



Equations of motion
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These equations hold in the inertial coordinate frame and 
they are only valid for the Kepler problem
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Potential theory

• U is known as the potential, it is equivalent 
to the potential energy of an object scaled 
to its mass

• By definition U is zero at infinity
• The Laplacian of U is zero ( U=0) outside 

to mass that it generating the potential
• The gradient of U is what we call gravity
• U=- /r is an approximation of U=0
• A more complete solution of U uses so-

called spherical harmonic functions



Why is there an orbital plane, why no other motion?
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How to obtain r( )

• A particle moves in a central force field
• The motion takes place within an orbital plane
• The solution of the equation of motion is 

represented in the orbital plane
• Substitution 1: polar coordinates in the orbital 

plane
• Substitution 2: replace r by 1/u
• Analogy with a mathematical pendulum
• Solve this an substitute elliptical configuration
• Final step: transformation orbital plane to 3D 

(this gives us the set of 6 Keplerian elements)



Mathematics on r( ):

No new information ->

Essential information ->



Mathematics on r( ):

Substitute:

Characteristic:

(h = length ang mom vector)



X i

Y i

Zi Perigee

Right ascension
Nodal line

Ω

ω
I

Kepler’s solution in an inertial coordinate system

vrH ×= r

v Satellite

XYZ: inertial cs

Ω: right ascension

ω: argument van perigee

θ: true anomaly

I: Inclination orbit plane

H: angular momentum vector

r: position vector satellite

v: velocity satellite

θ



Velocity and Position 
(aka vis-viva equations)
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Note: in this case only θ, or E or M depend on time. 



Total Energy

• The total energy in 
the system is the 
sum of kinetic and 
potential energy

• For the Kepler
problem one can 
show that the total 
energy is half that 
of the potential 
energy
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Kepler’s equation
• There is a difference between the definition of the true 

anomalyθ, the eccentric anomaly E and the mean anomaly M
• Note: do not confuse E and the eccentricity parameter e

θE

Transcendental relation:

M = E - e sin(E)

M = n (t - t0)

This is Kepler’s equation
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ellipse

focus

center



Keplerian elements

Position and velocity follow from:
– The semi major axis a
– The eccentricity e
– The inclination of the orbital plane I
– The right ascension of the ascending node ΩΩΩΩ
– The argument van perigee ωωωω
– Anomalistic angles in the orbit plane M, E and θθθθ

Also:
– You should be able to “draw” all elements
– Linear combinations of elements are often used
– Non-singular elements (Gau , Delaunay, Hill)



Example problem 1
Situation: 

The Earth has a semi major axis at 1 AU and e=0.01

Question 1: 
what are the values of r in the peri-helium and apo-helium

Question 2: 
what is the orbital period for a planet at a=1.5 AU and e=0.02

Question 3: 
plot for the Earth a graph of r as a function of the true anomaly θ

Question 4:
what is the escape velocity from Earth?



Example problem 2

• Jupiter is at about 5 AU, and a body from 
the asteroid belt (beyond Mars, but within 
Jupiter) performs a flyby at Jupiter
– Configuration 1: What V is required to 

escape the solar system?
– Configuration 2: What V is required for an 

orbit with a peri-helium smaller than 1 AU?
– Show that configuration 2 occurs less often 

than configuration 1 (In other words, how 
much percent swings into the solar system, 
how disappears?)



Example problem 3

• Show that the total energy is conserved for 
a particle in a Kepler orbit

• Hints:
– Compute the kinetic energy at periapsis

– Compute the potential energy at periapsis
– Why is it sufficient to calculate the sum at one 

point in orbit?
– Hint: consider the Laplacian of U



Example problem 4

• Show that U=1/r is consistent with 
Newton’s gravitational law

• Hints:
– acceleration = force / mass

– acceleration = gradient of U

• Related to this problem
– Why is the Laplacian of U (a.k.a. U) in 3D

equal to 0 for the exterior.



Example problem 5

• Hohmann orbits classify 
as a transfer trajectory 
from two circular orbits 
with radii r1 and r2. 

• To enter the transfer orbit 
we apply V1 and we we
arrive we apply V2

• What is total V to 
complete the transfer?

• What is the ratio between 
V1 and V2



SMART 1, ESA



The three body problem

• Configuration consists of three arbitrary 
masses that attract one another

• Take Newton’s gravity Law and add up all 
the forces (and convert to accelerations)

• Define the barycenter of the system 
• Only numerical solutions are tractable
• More common in astronomy is the 

“restricted three body problem”



Restricted three body problem

• Configuration consists of two large 
masses (mp and mq) that are about of the 
same size.

• In addition there is a small particle 
• The barycenter is between mp and mq

• The system is rotating at a uniform rate
• Equations of motion include “frame” terms 

as a result of this rotation



Planet p
Planet q

barycenter

Lagrange point

See also: http://janus.astro.umd.edu/javadir/orbits/ssv.html



Balance rotation and gravity

For mp and mq we have:



Uniform rotation
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Equations of motion after rotation
After straightforward differentiation we get 

If we ignore the Coriolis term, then we obtain

So that we can plot the length of the acceleration vector on the left hand 
side to demonstrate the existence of the Lagrangian points L1 till L5 �



p q

mp = 10
mq = 1



Horseshoe and Tadpole orbits

Saturn

Epimetheus

Janus



Example problem 6

• Identify all Lagrange points on the 
previous slide

• Show that L4 and L5 are at the locations 
where we find them 

• Compute the positions of L1 to L3.


