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Course Contents Dynamics 2

• Hill equations
• Hill sphere
• Planetary perturbations and resonances
• Tides

– Forcing 
– Roche limit

– Dissipation

• Other small accelerations



Hill equation set-up
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Some intermediate steps
For the equations of motion we always need the acceleration and the gradient 
of the potential (V)

(aka unfinished Hill equations)



Potential function V=U+T

• The U part belongs to a point mass (U= /r)
• T is called the disturbing potential
• We approximate V at the position of the 

satellite, thus (r+u,v,w) in the rotated frame:

This last relation is now substituted in the “unfinished version of the Hill equations”



Hill equations
• For the rotating coordinate system one can show that:

• Here u, v and w are local coordinates for a satellite relative to a 
circular reference orbit (thus, u: radial, v: flight direction and w: 
normal to plane, and T is a perturbing potential whose partial 
derivates are required in the local co-rotating frame)



Solutions of the Hill Equations

• Homogeneous: 

• Particular:
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Solutions of the Hill Equations (2):
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For each ith equation in the reduced particular system 
you should apply a Laplace transform:



Characteristic solution homogenous case

This example works well for rendezvous and docking type op situations



Gemini 7, 1965



Characteristic solution particular case



Corollary
• We apply an 

acceleration function 
at frequency 

• The orbit is perturbed 
at frequency 

• Resonances appear 
when is near n

• It works in the same 
way as mass spring 
systems do



Example problem 1

• Derive the analytical solution of the 
homogeneous solution of the Hill 
equations, and substitute initial conditions

• Explain how you can solve a rendez vous
between the Space shuttle and a Space 
Station with the obtained homogeneous 
solution of the Hill equation. 



Hill Sphere
• The approximate limit to a secondary’s 

(Moon’s or planet’s) gravitational 
dominance is given by the extent of its Hill 
sphere:

• A test particle located at the boundary of 
the Hill sphere is subject to a gravitational 
force from the planet comparable to the 
tidal difference between the force of the 
Sun on the planet and that on the test body

• The Hill sphere stretches out to the L1 
Lagrange point

• All planetocentric orbits within the Hill 
sphere are stable over long periods of 
time, this is where we find all natural 
satellites.
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Why is Rh like shown?

• For this we turn back to the Hill equations 
• For L1 we have that only the u equation counts, v and w are 

zero, and there are no perturbations (T=0). The u equation 
becomes:
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Example problem 2

• Show that our Moon is within the Hill 
sphere of the Earth

• Currently the Moon disappears at a rate of 
3.8 cm per year due to tidal energy 
dissipation. 

• How long would it take before we lose our 
Moon because it leaves our Hill sphere?

• All constants can be found in the PS book



Planetary Perturbations and Resonances
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Within the solar system all planets and Moons attract one another. This 
causes the Keplerian elements to change over time, susceptible elements 
are for instance the semi-major axis, the inclination and the eccentricity of 
asteroids and comets. Planetary orbit perturbations may be approximated 
by a second order system that is perturbed by an oscillation (see Hill 
equations):

The solution of this system is that of a harmonic oscillator:

2210

sincos
sincos)(

ω
ωω

−
+++=

n

tBtA
ntCntCtw

This solution will resonate when n and approach one another



Examples of resonances in the 
solar system

• Several resonances locks such as 
Epimetheus-Janus (see Lagrange point 
discussion).

• But also Neptune-Pluto, etc etc
• Resonances may force material into highly 

eccentric orbits, this results in collisions 
which clears the Kirkwood gaps in the 
asteroid belt.



Compare to fig 9.1 in Planetary Sciences book (JPL)



Compare to fig 9.1 in Planetary Sciences book (JPL)



Long term stability of planetary orbits

• Why is the solar system as it currently is? The system is 
4.5 billion years old.

• Are there periods of chaotic behavior in the solar 
system?

• Analytically you get resonances, but they are not real 
(moreover it is very difficult to do it right, see (Taff,1981))

• Numerical integration shows that the system remains 
stable for a very long time.

• The Earth’s orbital elements become harmonic 
expressions, and there are 100k year variations in the 
orbital elements (Ice age cycles)



Orbits about an oblate planet

• Kepler’s theory is good approximation of reality, and it 
describes the motion in gravity fields near large bodies 
like Earth or Sun pretty well. 

• The potential of the field is what we called U for the 
Kepler problem, but, there are higher order moments 
which we ignored

• The complete gravitational potential V is formally 
expressed as V=U+T, where T is a distrubing potential.

• Gravitational flattening (a part of T) results in a special 
situation which does significantly affect orbits, and the 
result can be explained analytically

• In the following many mathematical details are 
skipped, we only show the solution! (otherwise you 
may want to attend the lectures on astrodynamics I 
and II).



Perturbed equations of motion
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Typical questions are: 1) what coordinate system do we 
use? 2) explain all symbols 3) what are the ranges of 
the indices n,m and a 4) calculate the gradient of V



Solution equations of motion

Analytic
– Lagrange planetary equations
– Gravity potential in Keplerian elements
– Isolate the first-order solution
– Approximate higher-order perturbations

Numeric
– Conversion to system of first-order ODE
– Integration of system of equations
– (attend other lectures if you want to know more 

about the details)



Linear perturbations by C20
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Notes: 

• C20 not normalised, n: mean motion

• Similar expressions for higher-order moments (see book)



Example problem 3

• For what inclination do we get a sun-
synchronous orbit at 1000 km above the 
Earth’s surface?

• For what inclination will the peri-apsis
become fixed with respect to the planet?



Tides

• Newton once said:
– A tidal force is caused by the gravitational attraction 

of a remote body on your planet. 
– The DIFFERENCE between the local force and the 

force acting on the center of gravity of your planets is 
relevant for tides

• On Earth tides are caused by Sun and Moon
• In reality everything else in the solar system 

matters in the exact formulation of tidal 
accelerations.



Tide generating force



Roche limit

• Near a large planet, tidal 
forces grow beyond the 
maximum stress limit of a 
body causing it to break up, 
this limit is called the 
Roche’s limit. 

• The Roche limit is found by 
balancing the Moon’s self 
gravity at the surface against 
the tidal force of a planet



How large is the Roche limit
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Some remarks

• Most Moons around planets are 
outside the Roche limit and 
within the Hill sphere

• The tensile strength of the 
Moon is not taken into account, 
but it does play a role

• There are Moons, like Amalthea
around Jupiter and Pan around 
Saturn orbit within the Roche 
Limit.

Amalthea

Pan



Tidal energy dissipation

3.82 cm/yr

M2 : 2.50 +/- 0.05 TW

(Munk,1997)



M2 ocean tide



Tidal energy dissipation map



Dissipative forces and the orbits of small satellites

• Radiation pressure
– Sun light pushes particles (mostly micrometer sized dust) 

outwards

• Poynting-Roberton drag
– Centimeter sized particles spiral inwards to the Sun

• Yarkovsky effect
– Changes orbits of meter to km sized objects due to an uneven 

temperature distribution at the surface 

• Corpusclar Drag
– Like Poynting-Robertson, except that it is caused by solar wind 

particles

• Gas Drag
– Gas (atmosphere or in interplanetary space) exerts a drag effect

on a body proportional to the velocity squared of the body 
relative to the gas



Radiation pressure

Read: 2.7.1



Poynting Robertson Drag
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Read: 2.7.2
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In Particle’s Frame In Rest Frame of Sun
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For particles that re-radiate pressure the net effect is a 
drag in the flight direction. Analogy: If you bicycle in the 
rain, then you’ll become wet even when there is no wind.



Yarkovski Effect

Read: 2.7.3



Gas drag
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Read 2.7.5



Example problem 4

• Suppose that a satellite at 1000 km above 
the Earth loses 1 km per day due to air 
drag, the orbit remains circular, A = 10 
square meter, Cd=3, mass = 1000 kg. 

• What is the approximate density of the 
Earth’s atmosphere in kg/m^3 for this 
configuration



Homework assignments

• For work lecture on 20-November:
– Exercise 2.3 on page 39
– Exercise 3.29 on page 64



Study/Read PS book

• 13 Nov (Solar system formation etc)
– Study: 1.3, 12.1,  
– Read: Ch. 1, 12.3, 12.4.1, 12.6 – 12.9, 12.11, 

12.12

• 20 Nov (Solar system dynamics)   
– Study: Ch. 2.1 , 2.2, 11.1, 
– Read: Ch. 2


