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Introduction 
 

The High-resolution Ocean Topography Science Working Group (HOTSWG) meeting held in 
Washington D.C. in April of 2001 examined the capabilities of various instruments for meeting future 
science needs for high resolution ocean topography. 
 

Among the instruments considered was the Wide-Swath Ocean Altimeter (WSOA), an 
interferometric radar capable of providing ocean topography over 200 km swaths. The design presented 
during the April '01 HOTSWG meeting was a design which had been proposed by JPL for inclusion as a 
demonstration mission together with the proposed Jason-2 mission. Due to limitations in the Jason bus, 
the instrument shown did not represent the ultimate potential of the technique for future missions, such as 
the NPOESS platform. In addition, it was repeatedly stated during the meeting that, even for a 
demonstration mission, it would be highly desirable if the random height errors could be reduced. 
 

In this chapter, we review the WSOA system concept and capabilities, and address the concerns of 
the HOTSWG. In addition to issues identified by the HOTSWG, E. Walsh (private communication) has 
brought up a concern which he thinks limits the accuracy of any off-nadir height measurement instrument. 
Since the answer to his concern highlights the difference between the WSOA and more conventional 
altimeters, we think it is useful to present the resolution to the HOTSWG. 

This chapter is divided as follows: 

• Overview of the WSOA Instrument: In this section, we review the WSOA system concept, its 
predicted perfomance integrated with the Jason-2 altimeter. 

• Design Improvements to the Jason-2 WSOA Demonstration Mission: After the April '01 meeting 
we reexamined the WSOA design and found improvements in the processing techniques and the 
mode of operation which can be accommodated with the Jason-2 bus. These improvements help to 
significantly reduce the random measurement noise. 

• Potential Design Changes for Future Missions: This section addresses design changes which could 
be made with the current technology, but require the use of a different platform to fly the WSOA 
instrument. In this section, we show that, with currently available radar and interferometric mast 
technology, and with a platform capable of handling the products and moments of inertia of the 
WSOA instrument, single pass height performance accuracy comparable to nadir altimeters can be 
achieved over the entire swath. The performance improves even further if it is taken into account that 
the WSOA will revisit most points on the surface at least twice within a 10 day cycle. 

• Is Off-nadir Altimetry Inherently Limited? This section addresses concerns raised by E. Walsh, 
and shows that the WSOA concept is qualitatively and quantitatively different from traditional 
altimetry. 

 
The WSOA Measurement Concept 
 

In order to map ocean mesoscale phenomena adequately, it is necessary to be able to resolve 
phenomena which are on the order of the Rossby radius of deformation (a conservative value would be on 
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the order of 30km) and have a typical lifetime on the order of a month. It is not possible to reconcile both 
of these requirements with a single nadir looking altimeter: the TOPEX altimeter has a repeat cycle of 10 
days, but an equatorial separation of 300 km. Given a sufficient number of satellites, it is possible to meet 
these requirements, but at the cost of coordinating and launching multiple platforms, as well as cross-
calibrating different systematic errors due to orbit and instrument biases. 
 

The Wide Swath Ocean Altimeter (WSOA) concept is an attempt to meet the requirements using a 
single platform. The WSOA consists of a suite of instruments: a conventional nadir altimeter (Ku and C-
band nadir altimeters, 3-frequency radiometer, and GPS receiver) supplemented by a Ku-band radar 
interferometer [Rodriguez and Martin, 1992] [Rodriguez et al., 2001]. Figure 1 shows a diagram of the 
integrated instrument. The nadir altimeter is used for high precision basin scale measurements, for the 
estimation of ionospheric and tropospheric delays, and for the calibration of the interferometer. 
 

The radar interferometer illuminates 100 km swaths on either side of the nadir track using right and 
left-looking beams. The intrinsic cross-track resolution varies from approximately 670 m in the near 
range to about 100 m in  the far range. The along-track resolution is given by the azimuth beamwidth, and 
is approximately 13.5 km. In order to have spatially uniform resolution cells, and to reduce random 
measurement error, the final measurements are averaged to 15 km resolution cells. 

 
The 200 km swath enables the WSOA to achieve near global coverage with a single instrument. 

Figure 2 shows a comparison of the coverage obtained by two TOPEX-like altimeters, separated at the 
equator by 150 km, and the coverage obtained by a single WSOA. The height field shown is from the Los 
Alamos National Laboratory 0.1 degree eddy-resolving circulation model. The WSOA results shown are 
the products of a measurement simulator which includes random and systematic measurement errors. 

 
Another advantage of the 200 km swath is that, in contrast with a nadir looking altimeter, a typical 

point on the ocean surface will be imaged at least twice within a 10-day repeat period, and often more 
frequently. Figure 3 shows the number of times the North Atlantic is imaged by the instrument.  The 
multiple looks at the same point can be used to improve temporal sampling, but, perhaps more 
importantly, to reduce random measurement errors by averaging, optimal interpolation, or assimilation. 
Typically, one observes that the effective random measurement error is reduced by a factor of 1/√2, or 
better. 
 

The high accuracy requirements for ocean topography measurements implies that the measurement 
error budget must be thoroughly understood.  The errors for interferometric measurements and for the 
WSOA in particular are described in detail in [Rodriguez and Martin, 1992] [Rodriguez et al., 2001], so 
we limit ourselves here to a brief statement of results. The WSOA errors can be derived into three 
components: random errors, media errors, and platform roll errors. The random error contribution 
depends on the system signal to noise ratio (SNR), on the length of the interferometric baseline, and on 
the processing used. At the HOTSWG meeting, we presented the random height error coresponding to an 
implementation of WSOA designed to fit on the Jason platform constraints, which limit the baseline 
length to 6.4 m.  The predicted performance is shown in the second column of Table 1a.  We have 
subsequently refined our operational mode and processing algorithms, so that the single pass random 
height accuracy has improved significantly.  These results are presented in the next section. During the 
HOTSWG meeting we also showed that, after mosaicking the data over one cycle, and applying the cross-
over calibration described below, the mosaicked data root mean squared error dropped to 3.2 cm. Since 
the mosaicking algorithm is linear, we expect that the performance using the improved WSOA described 
in section 3, will improve linearly with the improved random noise performance. This remark applies as 
well to the estimation of geostrophic velocity. 

 
The WSOA interferometer does not directly measure tropospheric, ionospheric, and EM bias 

corrections, but uses the corrections from the nadir altimeter. Spatial variability of the ionosphere, 
troposphere, wave and wind fields over the scales of the swath will induce residual height errors. To 
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quantify these residual errors, we use the TOPEX along-track measurements of these quantities to 
estimate spatial variability of the corrections. Since these errors have a latitudinal dependence, we 
subdivide the data into 10 degree latitude bands. The result for the total (tropospheric, ionospheric, and 
EM bias) error for the global average, and the worst and best latitude bands is presented in Figure 4. 
 

Finally, the lack of knowledge in the spacecraft roll angle induces height errors. In order to remove 
these errors, we have deviced a calibration scheme which uses ascending and descending WSOA data at 
cross-over regions to estimate and remove the roll errors (see Figure 5). In order to validate the accuracy 
of the calibration technique, we have performed a simulation using one year of LANL circulation model 
data and a set of spacecraft roll characteristics for the Jason platform provided to us by CNES/Alcatel. An 
example of the resulting corrected height fields is shown in Figure 2b. As mentioned above, the total 
height root mean squared error, including random and roll errors, is 3.2 cm.  
 

One of the principal advantages of the WSOA measurements is that one can obtain the two-
dimensional sea surface, rather than just the traditional along-track profiles measured by nadir altimeters. 
The availability of a two-dimensional height field allows the calculation of surface topography derivatives 
in the zonal and meridional directions.  This means that it is possible to estimate the full vector 
geostrophic velocity everywhere WSOA measurements are available, rather than the  single component of 
the velocity measured by a nadir altimeter.  Figure 6a shows an example for the magnitude of the two-
dimensional geostrophic velocity for the topography presented in Figure 2b. The results of the LANL 
based simultaion show that the root mean squared error for the U and V components of the geostrophic 
velocity for the mosaicked data is 4.7 cm/s and 5.9 cm/s, respectively.  One can then use the time series of 
vector velocities to obtain estimates for the Reynolds stresses sampled at high resolution (Figure 6c). 
Similarly, the Laplacian of the height field can be used to estimate the geostrophic relative vorticity 
(Figure 6b).  The accuracy for these derived fields has been obtained using simple mosaicking, which is a 
simplistic model for the optimal estrimation for these quantities.  The estimation accuracies using more 
sophisticated techniques is currently under investigation. 

 
Design Improvements to the Jason-2 WSOA Demonstration Mission 
 

The measured interferometric phase is noisy because the two interferometric channels are not 
perfectly correlated. In the design presented at the April '01 HOTSWG, the following were the sources of 
signal decorrelation: 
• Thermal noise. 
• Geometric decorrelation: this is due to the fact that at boresight, the surface will speckle slightly 

differently for each receiver channel. 
• Angular decorrelation: this is due to the fact that iso-phase lines are not aligned with iso-range lines. 
• Misregistration: for the simple design, the returns were not completely aligned on the ground away 

from the center of the swath. 
 
As an example of the relative contribution of each source of decorrelation, Figure 7 shows the 

different contributions for the design presented at the April '01 HOTSWG meeting. 
 
After some thought, we have realized that, for a minor computational penalty on the on-board 

processor, it is possible to eliminate two of the sources of decorrelation: the geometric and misregistration 
correlations. 

 
In addition to improving phase noise, it is possible to reduce height noise by making the measured 

interferometric phase difference more sensitive to height variations. This can be accomplished by 
extending the interferometric baseline. However, it can also be accomplished by transmitting from both 
interferometric antennas, as described below. 
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The following subsections describe how these sources of error can be incorporated into the WSOA 
design, the penalties incurred in doing so, and the gains in performance. 

 
Improving Channel Co-Registration 
 

Due to the fact that the two interferometric receivers are separated by the interferometric baseline, 
signals from the same point on the ground will arrive at different times at the receivers. It is possible to 
add a single delay between the channels so that the signals are corregistered for a given incidence angle. 
However, residual misregistration will still occur away from the selected direction. 

 
In order to perform channel registration, conventional synthetic aperture radars (SAR) use an 

interpolation algorithm using a finite interpolation kernel. However, in order to preserve phase accuracy, 
the kernel length is not small, and the procedure is computationally expensive. 

 
The WSOA is a real aperture radar, and we show in Appendix A that in this case the interpolation 

of the two channels can be performed add a small computational cost using the chirp-z or chirp scaling 
algorithm [Rabiner, et al., 1969] [Raney, et al., 1994] . In contrast to conventional SAR's, the co-
registration during range compression does not disturb subsequent synthetic aperture image formation. 

 
As shown in Appendix A, the computational cost of using chirp-scaling for co-registration is small 

and can be easily incorporated into the current WSOA design. 
 

The Wavenumber Shift for WSOA 
 

The source of geometric decorrelation is the fact that the interferometric phase is not constant for 
all the scatterers within a given resolution cell. This variation in the interferometric phase causes the total 
interferometric contribution from that cell to add slightly incoherently, thus reducing the signal 
correlation. 

 
Gatelli et al. [1994] had an insight: suppose that one were dealing with monochromatic signals, and 

chose the wavelengths of the two channels to be such that the projected wavevectors on the ground are 
identical for both channels. In this case, the interferometric phase would be constant for all scatterers in 
the resolution cell, and the returns would add coherently. 

 
When dealing with a finite bandwidth signal, things are a bit more complicated, but Gatelli et al. 

[1994] provide a solution: take the signal from both channels and shift the spectra in such a way that the 
appropriate wavelengths are multiplied together so that the phase variation over the resolution cell is 
canceled. This spectral shift means that noise is now brought into the processing bandwidth. In order to 
remove this additional noise, Gatelli et al. propose to use a low-pass filter so that only the parts of the 
spectra which overlap contribute to the interferometric return. The penalty for this low-pass filter is a loss 
in resolution, but this loss is usually small and acceptable. 

 
The wave-number shift proposed by Gatelli et al. [1994] applies to SAR's, where the angular 

variation of the resolution cell in the azimuth direction is very small, so that iso-range and iso-phase lines 
can be consireded to be aligned. However, this situation no longer applies for the WSOA: since it is a real 
aperture system, significant deviations can occur between these two sets of lines. Viewed in another way, 
this is equivalent to saying in the monochromatic case that two wavelengths can be found to cancel the 
interferometric phase for one given azimuth direction, but not for all. 

 
In Appendix B, we show the effects of implementing the wave-number shift for WSOA: the 

geometric correlation term can be made to disappear, but the angular correlation term remains. 
Nevertheless, the performance gains are still significant enough to warrant the inclusion of this algorithm 
in the WSOA on-board operation. 
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The operations involved in implementing the wave-number shift consist of shifting the spectrum of 
the two signals after range compression by multiplying both with a phase ramp in time, followed by FIR 
filtering of the signals. The spectral shift can be combined with the last step of the chirp-scaling 
algorithm, which also involves multiplying each signal sample with a complex number, so that no 
computational penalty is involved. There is a computational penalty involved in FIR filtering the signals, 
but for small filter kernels, as will be the case for WSOA, the number of computations is small compared 
to performing the range compression. 
 

A study of the modifications required show that the on-board processor already prototyped for 
WSOA is capable of accommodating both chirp scaling and the wavenumber shift. 

 
Ping-Pong Interferometric Operation for WSOA 
 

If one transmit out of one antenna and receives in both, the interferometric phase difference will be  
 
given by   

 
However, if it were possible to transmit and receive out of one antenna, followed by transmitting 

and receiving out of the other one (which is called ping-pong mode in conventional interferometry), the 
interferometric phase would be  
 

 
i.e. operating in ping-pong mode results in obtaining an effective baseline which is twice as long as the 
physical baseline. 
 

All things remaining the same, one could think of implementing ping-pong mode by alternating the 
antenna used for transmit with every pulse. However, this simple approach will not work: it is well known 
that for distributed scatterers, such as the ocean surface, pulses which are separated by more than one-half 
an antenna length are not correlated. Therefore, in order to implement ping-pong mode one must transmit 
bursts of pairs of pulses, with the pulse separation being such that the two pulses are correlated and fit in 
the same return window. 

 
In order to do this and retain constant average power, the pulse length of the two pulses must be 

halved, leading to a decrease in the signal-to-noise ratio (SNR). However, it can be shown that the height 
noise is proportional to the square root of the SNR, while the proportional to the inverse baseline length 
so that roughly a factor of 2  performance gain can be achieved. 
 

An additional concern when using close pulse pairs for ping-pong mode is that the range 
ambiguities will increase, degrading performance. Similarly, one must be careful to chose the pulse 
repetition frequency and the pulse spacing so that both returns fit with the return window without 
interference, and there is no interference with the nadir altimeter. 
 

A detailed calculation shows that for the proposed WSOA system, a pulse spacing can be found 
such that the range ambiguities from the second pulse does not significantly increase the range ambiguity 
level: in practice, the range ambiguity is always dominated by the 0th, opposite side ambiguity. Further 
reduction of ambiguity contamination can be achieved by using opposite direction chirps for each pulse. 
Similarly, a PRF can be found such that ping-pong operation can occur simultaneously with the nadir 
altimeter. 
 

Φ = 2kr1 − k r1 + r2( )= k r1 + r2( )≈ kBsinθ

Φ = 2kr1 − 2kr2 ≈ 2kBsinθ
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The real cost of using ping-pong mode is the increased load on the on-board processor. One can 
show that a pulse length can be used such that half the range samples are required for the compression of 
each channel. However, using ping-pong mode introduces an additional calibration error on the transmit 
channel which canceled out in "standard" operation. This additional transmit phase imbalance can be 
calibrated using the null-baseline interferogram, but at the cost of roughly doubling the required number 
of range compressions. This will increase the processor power requirements, but we estimate that this 
mode could be demonstrated in the Jason-2 mission as an experimental mode. 

 
Performance Improvements 
 

We have taken into account the changes proposed above and calculated the expected performance 
for instantaneous mapping for an interferometric baseline of 6.4 m, assuming a single-transmit chirp 
length of 90 µsec, and a ping-pong chirp length of 45 µsec. The ocean σ0  was assumed to be in the 95% 
percentile (only 5% darker ocean conditions), in order to be conservative. The results for standard 
operation with and without chirp-scaling and wavenumber-shifts are presented in Table 1a. Similar results 
for ping-pong operation are presented in Table 1b. 
 

Notice that a performance gain from 30% to 50% can be achieved by using these improved 
processing and operating techniques. It should also be emphasized that these results are for the 
instantaneous performance of the interferometer. Due to the wide-swath capabilities, all imaged points 
will be revisited from 2 to 4 times within 10 days, so that additional gains in performance can be 
expected. As presented in the HOTSWG meeting, using optimal interpolation or simple averaging can 
significantly reduce the error estimated over a repeat cycle. 

 
Potential Design Changes for Future Missions 
 

The Proteus bus puts limitations on the performance of the WSOA which might be alleviated if 
another bus were used. The foremost restriction is imposed due to the fact that the Proteus bus yaw steers, 
so that the WSOA can only be fully operational for part of the mission. The temporal coverage 
characteristics were already presented at the HOTSWG meeting, and are the main reason for which the 
WSOA/Jason-2 combination can only be regarded as a demonstration mission. This restriction can be 
alleviated by using a platform which has solar panels with two degrees of freedom, or if a sun-
synchronous orbit is deemed acceptable. 
 

The greatest additional restrictions for the WSOA on Jason-2 are placed by the attitude control 
system. Bus characteristics place restrictions on the moments and products of inertia which can be 
accommodated, and also on the lowest allowable frequency. The net result of these restrictions is that the 
interferometric baseline length must be shorter than the limits set by the current state of the art in rigid 
deployable masts. Preliminary studies at A.E.C. Able have shown that 10 m masts are well within the 
limits of feasibility and would be able to meet the stability requirements set by WSOA. 
 

Using the parameters for the previous section, but allowing the baseline to be 10 m long, the 
expected performance is presented in Table 2a  and Table 2b. 
 

An additional limitation, at least at the current time, is the amount of power available from the bus. 
If the duty cycle were allowed to be doubled by doubling the PRF, while maintaining the same peak 
power and a 6.4m baseline, the performance shown in Table 3a and Table 3b. 

 
Finally, if one both doubles the duty cycle and increases the baseline length to 10 m, one obtains 

the performance shown in Tables 4a and 4b. 
 

In summary, given a platform with greater capability for tolerating higher moments and products of 
inertia, or having higher average power capabilities, the performance of the WSOA can rival that of a 
conventional altimeter without requiring any improvements in currently available technology. Studies at 
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JPL have shown that there currently exist platforms which could provide a suitable environment to the 
WSOA. Some of the platforms have been examined for the Ocean Observer Mission studied by IPO. 

 
Is Off-Nadir Altimetry Inherently Limited? 
 

In a private communication, E. Walsh has raised the concern that the angular variations in the 
backscatter cross section, σ0 , induce unacceptably large errors on the WSOA estimated heights. In this 
section we address these errors (leaving mathematical details for an appendix) and show that they are a 
minor contributor to the WSOA error budget. 

 
The main source for Walsh's concern is due to a misunderstanding of the algorithms which are used 

to estimate the surface height for coherent interferometers, such as WSOA. In an previous design for a 
non-coherent interferometer [Bush, et al., 1984] [Parsons and Walsh, 1989], the height had been 
estimated by tracking the centroid of the waveform formed by the power interference pattern. In this case, 
the height estimation algorithms are analogous to the height estimation algorithms for conventional 
altimetry: a single height estimate is obtained by tracking a "waveform" consisting of many range 
samples. The typical size of the waveform in range is 245 m, for the example chosen by Walsh. This 
corresponds to a ground resolution of about 3 km. As Walsh correctly points out, the angular variations 
subtended by such an area will cause a significant shift of the waveform centroid.  Using this technique, 
one would obtain height errors which are meter level, which are unacceptable for WSOA science 
applications. 
 

Coherent interferometers [Rodríguez and Martin, 1992], on the other hand, do not use waveform 
tracking to obtain a height estimate. Rather, since the complex samples are returned, it is possible to 
assign an interferometric phase to each range sample, rather to many range samples. This interferometric 
phase, together with the radar range (which is not estimated, but rather set by the clock accuracy of the 
system, and the corresponding time tagging of each range sample), can be converted to an estimate of the 
surface height, following the algorithm described in [Rodríguez and Martin, 1992]. 

�

The angular variation of the backscatter cross section will also result in height biases for a coherent 
interferometer. However, the range of incidence angles will correspond in this case to the angles 
subtended by the imaged pixel, rather than by the angles subtended by the interferometric lobe. The ratio 
of these angles is equal to the ratio of the radar intrinsic range resolution to the range subtended by the 
interferometric lobe, 7.5/245≈0.03 so that intuitively one expects the effects to be two orders of 
magnitude smaller than the biases for the incoherent interferometer case. 

 
Appendix C derives the exact value for the biases, and confirming the intuitive argument outlined 

above. Using formulas derived in that appendix and the WSOA values for the range resolution  and the 
platform height h , following Table 5 shows the expected height biases as a function of wind speed. As 
can be seen from this table, the expected errors due to the angular variation of the cross section are very 
small compared to the other contributors to the WSOA error budget, and can therefore be neglected. 

 
Appendix A: Resampling Using the Chirp-Z Transform 
 

If uniform and identical sampling is used for both radar channels, the imaged pixels on the ground 
will fail to line up exactly due to the slightly different viewing geometry for each channel. 
The range difference between the channels is two given by 
 

∆r ≈ Bsinθ0 + B
cosθ0

tanθ0

δr
r0

                                             (1)
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where B  is the interferometric baseline, θ0  is the angle to a reference point, r0  is the range to that point, 
and δr  is the range relative to the reference range, and the expansion has been taken to the center of the 
swath. 
 

Assuming that the first channel is sampled as r1 = r0 + δr  , the second channel must be sampled at 
the ranges 
 

�

where ζ = Bcosθ0 r0 tanθ0( ).  Assuming that constant timing differences are taken care of by suitably 
choosing the range compression function, the co-registration problem is reduced to sampling the second 
channel at 1 +ζ( )δr  if the first channel is sampled at δr .  This can be accomplished by using the chirp-
scaling algorithm [Rabiner, et al., 1969] [Raney, et al., 1994]. The details are given in the following 
paragraphs. 
 

Assume the transmit signal is given by   
 

 
In terms of the system bandwidth ∆f  and the chirp duration T , α =  ∆ f 2T( ).  The received signal 
from a point target after down-conversion is given by (after removing the shift to the center pixel)  

�

where k0  is the center frequency wavenumber, r2  is the second channel range to the point target. 
 
We proceed to apply the chirp scaling algorithm by multiplying the signal prior to range compression by 
the quadratic phase factor exp iβt2[ ] (β = αζ   ). Range compression and resampling are achieved by 

convolving the signal with the reference function exp −i α + β( )t 2[ ], so that the range compressed signal 
can be written as   
 

S t( )= e−2ik0r2 dτ A τ − τ0( )eiα τ − τ 0( )2

eiβτ 2

e− i α + β( ) τ −t( )2

∫                           (3) 

 
Defining the point target response as  

�

the return signal can be written after some rearrangement of terms as  

r2 = r0 + Bsinθ0 + 1 +ζ( )δr

S t( )= A t( )eiα t 2

eiω 0t 2)

S t( )= A t − τ0( )eiα t −τ 0( )2

e−2ik0r2

τ0 =
2
c

r2 − r0 − Bsinθ0( )

x t( )= dη A η( )exp 2iαηt[ ]∫                                           (4)
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�

�

If β = 0  (i.e., no chirp scaling), the result at  would be  

�

S ′ t ( ) = e−2ik0 r2 e−iα ′ t 2

eiατ 0
2

exp 2iατ 0 ′ t − τ0( )[ ]χ ′ t −τ 0( )                             (6) �

�

If we set ′ t = 1+ ζ( )t  (i.e., the correctly resampled signal), we see that the only difference between 

equations (5) and (6), is a phase factor e
−iβt 2 1+ζ( )  which can be removed after range compression by post-

multiplying the signal. 

 
Notice that, in terms of computation, the chirp scaling algorithm does not increase the number of 

operations during range compression: it merely changes the reference function, which involves no 
additional computation. The additional computation occurs in the pre- and post-multiplication of the 
signal by the appropriate chirp functions. This involves merely N complex multiplications, where N is the 
number of signal samples, while the range compression involves two 5NlogN Fourier transforms and N 
complex multiplications, so that the resampling is computationally cheap compared to the range 
compression. 

 
Appendix B: The Wave-Number Shift for WSOA 

Given maximum likelihood estimation, the interferometric phase standard deviation, σ0 , is given 
by 

�

�

where γ  is the correlation coefficient between the two interferometric channels: 

�

�

and  denotes ensemble averaging over speckle realizations. The random height error is due to errors in 
the estimation of interferometric phase, and is given by [Rodriguez and Martin, 1992] 

�

σΦ =
1

2NL

1 − γ 2

γ
                                               (7)

γ =
v 1( )v 2( )*

v 1( )v 1( )* v 2( )v 2( )*
                                             (8)

S t( )= e−2ik0r2 e− iα 1+ζ( )t2

eiατ 0
2

exp 2iατ 0 1 +ζ( )t −τ 0( )[ ]χ 1 +ζ( )t −τ 0( )           (5)

δh = r0 tanθ0

kB
σ Φ
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�

where r0 is the range from the platform to the surface, θ0 is the look angle, k is the electromagnetic 
wavenumber, and B  is the length of the interferometric baseline. 
 

Equation (7) shows that the phase standard deviation can be predicted if the correlation coefficient 
can be modeled. The return signals after range compression co-registration can be modeled as  

�

�

v 1( ) t( ) = A dS  χ t − 2r1 c − ∆( )∫             

G φ( )s r,φ( )e−2ikr1 + n1                                                              (9)
�

�

�

v 2( ) t( )= A dS  χr t − 2r2 c − ∆( )∫
G φ( )s ′ r ,φ( )e−2ikr2 + n2                                                        (10)

�

�

where A is a constant which depends weakly on range; ∆  is a delay introduced to coregister the two 
channels; χr  is the system range point target response; φ  is the azimuth angle coordinate (any point in 
the surface plane can be defined by its ground range ρ  and its azimuth angle φ ); G φ( ) is the system�

antenna pattern, which is assumed to be much broader in the range direction than the system range 
resolution, so that only its azimuth variation must be included; r1  and r2  represent the range from the 
reference and secondary antennas to a point on the surface; n1  and n2  represent the thermal noise in 
channels 1 and 2, respectively, and are assumed to be uncorrelated white noise processes with variance 
N ; and, finally, s ′ r ,φ( )  represents the rough surface brightness which is assumed to satisfy  

�

�

where σ0  is the normalized radar cross section. Equation (11) is consistent with the deep phase 
approximation in rough surface scattering [Tsang, et al., 1985], which applies when the surface rms 
roughness is large compared to the wavelength. That approximation is valid for all the systems studied. 
Notice that we assume that the radar cross section is constant over the radar resolution cell (see Appendix 
C for a relaxation of this assumption). 
 

To study the effects of the spectral shift algorithm, we introduce the Fourier transform of the range 
ptr 

�

χ(t) =
1

2π
dω  ∫ eiωtW ω( )                                    (12) �

�

and rewrite the equations for the return signal (neglecting for the moment the thermal noise contributions) 
to obtain 

s r( )s * ′ r ( ) = δ r − ′ r ( )σ 0                                     (11)
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�

�

�

The first step of the wavenumber shift algorithm starts by multiplying both of the interferometric 
signals in the time domain by a phase factor equivalent to the interferometric phase relative to a reference 
track. Over a localized region, this is equivalent to multiplying by a constant phase factor, and one which 
varies linearly in time. For our purposes, we will neglect the constant phase term and assume that the first 
signal is multiplied by a phase factor exp iwt[ ], while the second is multiplied by the complex conjugate. 
The result of multiplying by a phase ramp in the time domain will be to shift the spectrum in the 
frequency domain. We will choose w  to maximize the spectral overlap of wavenumber components over 
the pixel. After shifting the spectra, both signal are low-passed filter with an FIR filter whose frequency 
response we will denote by H ω( ). The filter characteristics will be chosen below to reduce the noise 
introduced by the frequency shift. 

 
After both of these operations, the return signals can be written as 

 

 

�

�

In order to calculate the interferometric correlation, one must evaluate the expectation value of the 
channel cross-product: 

�

v 1( ) t( )v 2( )* t( ) = A 2 1
2π

 
  

 
  

2

dω1 dω2∫ ei ω1− ω 2( )tei ω1 +ω 2( ) ∆∫
W ω1 − w( )W * ω2 + w( )H ω1( )H * ω2( )F ω1,ω2( )          (17)

�

v 1( ) t( ) = A
1

2π
dω eiω t −∆( )W ω − w( )H ω( )∫

dS e−2i ω − w( )r1 cG φ( )s r,φ( )e−2ikr1                         (15)∫

v 2( ) t( ) = A
1

2π
dω eiω t + ∆( )W ω + w( )H ω( )∫

dS e−2i ω + w( )r2 cG φ( )s r,φ( )e−2ikr2∫                        (16)

v i( ) t( )= A
1

2π
dω eiω t − ∆( )W ω( )∫

dS e−2iωr1 c∫ G φ( )s r,φ( )e−2ikr1                               (13)

v 2( ) t( ) = A
1

2π
dω eiω t + ∆( )W ω( )∫

dS e−2iωr2 c∫ G φ( )s r,φ( )e−2ikr2                             (14)
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�

where the last function is defined as 

�

F ω1,ω2( )= σ0 dS e−2i k1r1 − k2 r2( )e2iw r1 + r2( ) cG 2 φ( )∫                     (18) �

�

and ki ≡ k +ω i c .  Notice that equation (11) was used to reduce the double spatial integral to a single 
integral. 
 

To proceed further, we notice that we can approximate  

 

 
where we have made use of the fact that the azimuth beamwidth of a typical system is much smaller than 
1.  Expanding about r0  and θ0 = arccos H r0( ), this can be further approximated as  

�

r1 − r2 ≈ B − sinθ0 + sinθ0
φ2

2
− cosθ0 cosθ0

δρ
r0

 

 
 
 

 

 
 
 

                       (20)
�

�

where δρ = δr sinθ0  is the deviation in ground range of the surface point from r0 , and terms of order 

R sinθ0r0( )( )2
, where R is the system range resolution, have been neglected. 

 
After making the previous approximation and assuming that we are dealing with a narrow-band system so 
that , one can evaluate the integral to obtain 

�

F ω ,∆ω( ) =
ρ0σ0

2sinθ0

e2ikB sinθ 0 e2iω / cBsinθ0 e−2i∆ωr0 / ce4iωr0 / c

c
2

2πδ ∆ω − 2w −
ckBcosθ0

r0 tanθ0

 

 
  

 

 
  

dφ e−ikB sinθ 0φ
2

G 2 φ( )∫                                                  (21)

�

�

where ∆ω = ω1 − ω2  and ω =1 2 ω1 + ω2( ). 

Notice that if one chooses the spectral shift  

�

r1 − r2 ≈ B −sinθ + sinθ 1 − cosφ( )[ ]

≈ B −sinθ + sinθ
φ2

2
 

 
 
 

 

 
 
                                             (19)

ω = −
c
2

kBcosθ0

r0 tanθ0

22)
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�

the phase is constant over the range resolution cell, for a given azimuth, and it is not hard to convince 
ones self that the is just the shift in frequency required by geometry so that the projected wavenumber on 
the ground is the same for both channels. After making this choice for the spectral shift one has that the 
cross-channel product expectation function can be written as 

v 1( ) t( )v 2( )* t( ) = A 2 1
2π

 
  

 
  

ρ0σ0

sinθ0

c
2

e2ikBsinθ0 e4iwr0 c

dω e2iω − Bsinθ0 c−∆( )W ω − w( )W * ω + w( )H ω( ) 2

∫
dφ e−ikB sinθ 0φ2

G 2 φ( )∫ 23)

�

�

Notice that if the coregistration delay ∆  is chosen appropriately, the phase term disappears in the first 
integral. Furthermore, if one chooses H ω( ) to be centered at zero frequency and with a spectral width of 
∆f − w π , where ∆f  is the bandwidth of W , then only the parts of the signal which correlate on the 
ground contribute to the return, and no additional noise is brought in due to the spectral shift. 
Using the previous results, we obtain the following expression for the complex correlation coefficient  

�

�

and the angular (γ φ ), and noise (γ N ) correlation factors are given by  

�

where SNR is the system signal-to-noise ratio. 
 

The result obtained for the correlation function share the angular and noise correlation functions 
with the results previously presented at the HOTSWG, but the introduction of co-registration and spectral 
domain shifts have done away with the misregistration and geometric decorrelation terms. The noise 
decorrelation term,γN , is common to the cross-correlation of any two signals with additive uncorrelated 
white noise. The fact that the angular correlation term cannot be made to disappear like the geometric 
correlation term is due to the fact that iso-phase difference contours are hyperbolas, whereas iso-range 
contours are circles, so that the projected wavelengths can only be made to coincide along one given 
azimuth direction. 

 
Appendix C: Mathematical Details of σ0  Angular Variations 

 
The interferometric signal can be modeled as 

v 1( )v 2( )*

v 1( )v 1( )* v 2( )v 2( )*
= γ φγ N = γ                                       (24)

γ N =
1

1 + SNR−1                                                                              (25)

γ φ =
dφ

−π

+π

∫ exp −ikBsinθ0
φ 2

2

 

 
 
 

 

 
 
 G

2 φ( )

dφ G2 φ( )∫
                                          (26)
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�

where vi  is the coherent signal in channel i , A  is a constant which is not important for the following 
discussion, x  is the cross-track distance from the interferometer ground track, Φ x( )  is the 
interferometric phase difference, which is given by  

�

�

where k = 2π λ  is the EM wavenumber (λ ≈ 2.5 cm for WSOA), B  is the baseline length (7 m for 
WSOA), θ  is the look angle, r  is the range, and h  is the height above the ocean (1336 km for WSOA). 

 
Following Walsh (and geometric optics), I will take the angular variation of σ0  to be given by  

�

�

where a  is a constant independent of look angle, and s 2  is the mean squared slope, which, following 
Walsh, we will assume to be related to the 10 m wind speed, U10 , as follows  

�

where U10  is measured in meters/second. 
 

Finally, χ x( ) is the system range point target response (ptr) as a function of the cross-track 
distance, and x0  is the pixel center location. In order to simplify the algebra in the following discussion, I 
will assume that the ptr can be represented as a Gaussian, as follows  

�

�

where X  represents the half-power ground resolution (i.e.; χ X 2( ) =1 2), and is related to the system 
range resolution R  by the equation X = R sinθ .  For WSOA, the system range resolution R  is 7.5 m, 
which corresponds to a bandwidth of 20 MHz. 
 

In order to proceed, we note that for the system parameters used for WSOA, the phase and cross 
section variations over a pixel are small, so that one is justified in expanding the integral in equation (27) 
about x0 . Keeping up to first order terms in the Taylor expansion, one readily shows that  

�

v1v2
* = A dx e−iΦ x( )σ 0 x( )χ x − x0( )∫                                     (27)

Φ = kBsinθ = kB
x
r

= kB
x

h2 + x2                                     (28)

σ0 = ae−θ 2 s2

29)

s 2 = 0.018U10
1 2                                                 (30)

Φ ≈ kBsinθ0 +κη                                                   (32)

χ x( ) = exp −4(ln2)
x 2

X 2

 
  

 
                                             (31)
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�

where sinθ0 = x0 h2 + x0
2 = x0 r0 , η = x − x0 , and the cross-track interferometric fringe�

wavenumber κ  is given by  

�

Similarly, one can show that σ0  can be expanded as  

�

where β  is given by  

�

Introducing these approximations, equation (27) can be written as  

�

The integral can be evaluated by using the following trick  

�

�

and noticing that the integral in the right hand side of equation (37) is just the Fourier transform of the ptr, 
which I will denote by � χ κ( ).  The interferometric return can then be written as  

�

where � ′ χ κ( ) = ∂ � χ κ( ) ∂κ . With the exception of the expression contained in the last parenthesis of 
equation (38), this equation represents the expected interferometric return when there is no angular 
variation of the backscatter cross section. Therefore, all phase (and consequently, height) errors will be 
introduced by the expression contained in the last parenthesis. In general, the term proportional to β  will 
be much smaller than 1 (as can be verified by inserting an expression for the ptr), and one may 
approximate  

�

κ = kB
r0

cos2 θ0                                                  (33)

σ0 θ( )≈ σ 0 θ0( ) 1 + βη[ ]                                           (34)

β = −
2θ0

s2
cosθ0

r0

                                             (35)

v1v2
* = Ae− iΦ θ0( )σ 0 θ0( ) dη e− iκη 1 + βη( )χ η( )∫                  (36)

dη e−iκη 1+ βη( )χ η( ) = 1 + iβ
∂

∂κ
 
 
 

 
 
 dη e−iκη χ η( )∫∫            (37)

v1v2
* = Ae− iΦ θ0( )σ 0 θ0( )� χ κ( ) 1+ iβ

� ′ χ κ( )
� χ κ( )

 

 
  

 

 
                          (38)

1 + iβ
� ′ χ κ( )
� χ κ( )

 

 
  

 

 
  ≈ exp iβ

� ′ χ κ( )
� χ κ( )

 

 
 
 

 

 
 
 

≡ exp −iδΦ[ ]                  (39)
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�

where δΦ is the phase error induced by changes in the cross section as a function of incidence angle. 
Using equations (31), (33), (35), and the fact that the Fourier transform of a Gaussian is itself a Gaussian, 
one can show that the phase error as a function of incidence angle is given by the following expression  

δΦ = −
R2

r0
2

1
4 ln2

kBcosθ0

tan2 θ0

θ0

s2                                        (40) �

�

In order to translate this phase error into a height error, we recall that the two are related by the following 
equation 
�

Using equation (40), this can be written as  

�

For the range of incidence angles used by WSOA (θ0 <4° ), one can approximate tanθ0 ≈ θ0  and 
cosθ0 ≈ 1, so that the final expression for the height error is given by  

�

where I have replaced the mean squared slope by its wind speed dependent equivalent, as given in 
equation (30). 
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Cell Center (km) Height Error (cm) Height Error Spectral Shift (cm) 
22.1 5.2 3.9 
36.4 4.7 3.6 
50.7 4.5 3.5 
65.0 4.6 3.8 
79.2 5.2 4.3 
93.5 6.5 5.4 

 
Table 1a: 6.4 m Baseline Height Noise Performance for Single-Transmit Operation 

 
Cell Center (km) Height Error (cm) Height Error Spectral Shift (cm) 

22.1 5.6 4.1 
36.4 4.3 3.3 
50.7 3.7 2.9 
65.0 3.5 2.8 
79.2 3.9 3.1 
93.5 4.8 3.9 

 
Table 1b: 6.4 m Baseline Height Noise Performance for Ping-Pong Operation 

 
 

Cell Center (km) Height Error (cm) Height Error Spectral Shift (cm) 
22.1 4.4 3.1 
36.4 3.7 2.7 
50.7 3.4 2.5 
65.0 3.3 2.6 
79.2 3.8 2.9 
93.5 4.6 3.6 

 
Table 2a: 10 m Baseline Height Noise Performance for Single-Transmit Operation 

 
Cell Center (km) Height Error (cm) Height Error Spectral Shift (cm) 

22.1 5.2 3.3 
36.4 3.6 2.6 
50.7 3.0 2.2 
65.0 2.7 2.1 
79.2 2.9 2.2 
93.5 3.5 2.6 

 
Table 2b: 10 m Baseline Height Noise Performance for Ping-Pong Operation 
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Cell Center (km) Height Error (cm) Height Error Spectral Shift (cm) 
22.1 3.7 2.8 
36.4 3.3 2.5 
50.7 3.2 2.5 
65.0 3.2 2.7 
79.2 3.7 3.0 
93.5 4.6 3.8 

 
Table 3a: 6.4 m Baseline, Double Duty Cycle, Height Noise Performance for Single-Transmit Operation 

 
 

Cell Center (km) Height Error (cm) Height Error Spectral Shift (cm) 
22.1 4.0 2.9 
36.4 3.0 2.3 
50.7 2.6 2.0 
63.0 2.4 2.0 
79.2 2.7 2.2 
93.5 3.4 2.7 

 
Table 3b: 6.4 m Baseline, Double Duty Cycle, Height Noise Performance Ping-Pong Operation 

 
 

Cell Center (km) Height Error (cm) Height Error Spectral Shift (cm) 
22.1 3.1 2.2 
36.4 2.6 1.9 
50.7 2.4 1.7 
65.0 2.3 1.8 
79.2 2.7 2.0 
93.5 3.3 2.5 

 
Table 4a: 10 m Baseline, Double Duty Cycle, Height Noise Performance for Single-Transmit Operation 

 



 

 

 

208 

 
Cell Center (km) Height Error (cm) Height Error Spectral Shift (cm) 

22.1 3.6 2.3 
36.4 2.6 1.8 
50.7 2.1 1.5 
65.0 1.9 1.5 
79.2 2.1 1.5 
93.5 2.5 1.8 

 
Table 4b: 10 m Baseline, Double Duty Cycle, Height Noise Performance for Ping-Pong Operation 

 
 

U10 (m/s) Height Error (cm) 
1 0.08 
7 0.03 

10 0.03 
15 0.02 

 
Table 5: Height error due to brightness variations, as a function of wind speed. 
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Figure 1.  Wide Swath Ocean Altimeter measurement concept. TheWSOA is shown here integrated with the Jason 
Altimeter and the Proteus bus. 
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Figure 2a.  Example coverage of the North Atlantic for two TOPEX class altimeters flying in formation with an 
equatorial separation of 150 km. 
 

 
Figure 2b.  Simulated estimated heights by a single WSOA in a TOPEX orbit.  The height field shown includes 
measurement noise and residual calibration errors. 
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Figure 3.  Number of times each surface point is mapped by WSOA during a 10 day repeat cycle.  Unlike 
conventional altimeters, most points in the ocean are mapped at least twice, and often more frequently. 
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Figure 4.  Contribution of tropospheric, ionospheric, and EM bias error sources as a function of distance from the 
satellite nadir track.  The estimates were derived from TOPEX measurements. 
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Figure 5.  Schematic of the proposed calibration scheme for removing spacecraft roll errors using interferometer 
and altimeter cross-overs.  Assuming four passes, there will be four cross-over regions where the spacecraft roll can 
be estimated.  The estimates of roll are then interpolated between cross-over regions. 
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Figure 6a.  Magnitude of the geostrophic velocity estimated from the WSOA height simulation results shown in 
Figure 2a. 
 
 
 

 
 
 
Figure 6b.  Relative vorticity estimated from the WSOA height simulation results shown in Figure 2a. 
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Figure 6c.  Principal component of the Reynolds stress tensor, derived from a six month WSOA simulation of the 
North Atlantic, based on the LANL North Atlantic eddy resolving model. 
 

 
 
Figure 7.  Components of the total correlation between the two interferometric channels assuming the simplest 
onboard processing. Using the more sophisticated algorithms described in the text, the misregistration and geometric 
correlations can be neglected. The total correlation is the product of all correlations, and determines the instrument 
height noise. 
 


