### SEAMERGES:

GPS Measurements in S.E. Asia: Sundaland Motion and Deformation before and after the December 26th, 2004 Magnitude 9.0 Earthquake

<u>W.J.F. Simons</u> <sup>(1)</sup>, C. Vigny <sup>(2)</sup>, S. Abu <sup>(3)</sup>, Chalermchon Satirapod <sup>(4)</sup>, M. Hashizume <sup>(4)</sup>, Sarayut Yousamran <sup>(5)</sup>, C. Subarya <sup>(6)</sup>, K. Omar <sup>(7)</sup>, H.Z. Abidin <sup>(8)</sup>, A. Socquet <sup>(1)</sup> and B.A.C. Ambrosius <sup>(1)</sup>

(1) DEOS, Delft, Netherlands

- (2) ENS, Paris, France
- (3) DSMM, Kuala Lumpur, Malaysia
- (4) Chulalongkorn University, Bangkok, Thailand
- (5) RTSD, Bangkok, Thailand
- (6) BAKOSURTANAL, Cibinong, Indonesia
- (7) UTM, Johor, Malaysia
- (8) ITB, Bandung, Indonesia

No contents of this presentation can be used without prior approval of the first author (Wim.Simons@lr.tudelft.nl)

Regional Seminar on Geodynamics, 16 February 2004, Kuala Lumpur, Malaysia

1/17







Department of Earth Observation and Space Systems (DEOS)

Delft University of Technology

# **Outline**

- What is Crustal Motion?
- Tectonic Settings of S.E. Asia
- GPS for Geodynamic Studies
- Aim GPS Measurements in S.E. Asia?
- Geodetic GPS Network in S.E. Asia
- GPS Position Time Series
- Sundaland Motion and Deformation
- Sundaland Deformation: 26 December 2004
- Co-seismic Displacements from GPS
- Post-seismic Displacements from GPS
- Additional GPS Measurements in S.E. Asia
- Conclusive Remarks



2/17

SEAMERGES:

## What is Crustal Motion?

- Earth's crust is made up of more than 20 tectonic plates
- Plates 'float' on the 'fluid' interior of the Earth
- Plates are moving (differently) for millions of years
- Plates are continuously (re)shaping the Earth's exterior
- Geodynamic processes occur when plates converge/collide:
  - Earthquakes
  - Volcanic eruptions
  - Tectonically induced landslides
  - Tsunamis



#### SEAMERGES:

## **Tectonic Settings of S.E. Asia**

**Predicted Tectonic Plate Motions** 

Distribution of Earthquakes ( $Mw \ge 5$ )



Wednesday, February 16, 2005

4/17



# **GPS for Geodynamic Studies**





Geodetic GPS Receivers

SEAMERGES:

- Measure stable GPS points continuously or in campaign style
- Use scientific high-precision GPS software (GIPSY, GAMIT,...)
- Compute (daily) positions with millimetre accuracy
- Changes position in time give displacements or velocities

Wednesday, February 16, 2005



## **Aim GPS Measurements in S.E. Asia?**

- 1) Define the (absolute) motion of the Sundaland block
  - Covers most of S.E. Asia, moving at 2.5-3.5 cm/yr
  - Remeasure/expand EU-ASEAN GEODYSSEA network
  - Include (high-quality) ASEAN GPS networks
- 2) Define the deformation zones and Sundaland boundaries
  - Regions that move different than 'rigid' Sundaland
  - Remove the absolute motion from the GPS velocities
- 3) Study specific natural hazard areas in S.E. Asia
  - Monitor (near real-time) behaviour of tectonic faults
  - Earthquake related pre-/co-/post-seismic motions



# **Geodetic GPS Network in S.E. Asia**



### GPS network size in S.E. Asia: 100+ points (2003)

Wednesday, February 16, 2005



7/17

SEAMERGES

# **GPS Position Time Series**

GPS point KUAL, Malaysia

#### Constructing time series from GPS campaigns

outlier

Linear fit through a number of observations

outlier



Wednesday, February 16, 2005

2 observations 2-4 years 3 observations 3-6 years 3 observations 3-6 years 4 observations 4-8 years 6 observations 6-12 years 6-12 years 0 Overview GPS activities 6 Overview GPS activities 0 Overvi

- Include data global (IGS) GPS network
- High-precision (daily) network positions
- Map in global (ITRF) reference frame
- Estimate yearly position changes
  - Update kinematical model S.E. Asia



8/17

SEAMERGES:

earthquake

### **Sundaland Motion and Deformation (1)**



• Sundaland has rigid core, but significant deformation close to its boundaries

Wednesday, February 16, 2005

9/17

SEAMERGESE



### **Sundaland Motion and Deformation (2)**



#### Describe motion with a rotation pole vector

| Reference             | Reference<br>frame | Sites<br>used | Pole Rotation parameters |                      |         |
|-----------------------|--------------------|---------------|--------------------------|----------------------|---------|
|                       |                    |               | Lat(°S)                  | Lat( <sup>o</sup> E) | °/Myr)  |
| GEODYSSEA             |                    |               |                          |                      |         |
| Wilson et al. [1998]  | ITRF-94            | 12            | 31.8°                    | $134.0^{\circ}$      | -0.280° |
| Simons et al. [1999]  | ITRF-96            | 12            | 43.0°                    | $119.0^{\circ}$      | -0.370° |
| Michel et al. [2001]  | ITRF-97            | 10            | 56.0°                    | 77.0°                | -0.339° |
| SEAMERGES             | ITRF-00            | 28            | 48.9°                    | 85.8°                | -0.341° |
| Others                |                    |               |                          |                      |         |
| Sella et al. [2002]   | ITRF-97            | 3             | 38.9°                    | 93.1°                | -0.393° |
| Kreemer et al. [2003] | NNR                | 9             | 47.3°                    | 89.8°                | -0.392° |
| Bock et al. [2003]    | ITRF-00            | 16            | 49.8°                    | 84.1°                | -0.320° |

#### History Sundaland rotation pole parameters



#### GPS velocities S.E. Asia w.r.t. Sundaland

Wednesday, February 16, 2005

10/17

SEAMERGES:







## Sundaland Deformation: 26 December 2004 (2)

### Before Mw 9.0 Earthquake:

- Sundaland stable with rigid core, deformation at edges
- GPS sites positions & velocities well known (2-3 cm/yr)
  During Mw 9.0 Earthquake:
- Sundaland deforms further than 2000 km inside core
- Co-seismic displacements (up to 20 cm/min)
- GPS network is deformed, new positions unknown After Mw 9.0 Earthquake:
- Sundaland continues to deform significantly
- Post-seismic displacements (initially up to 1 cm/day)
- GPS network continues to deform for months->years



SEAMERGES:

# **Co-seismic displacements from GPS**

40

- Permanent GPS data:
  - Thailand (4)
  - Malaysia (36)
  - Indonesia (5)
  - Singapore (1)
  - Other countries (9)
  - Outside region (21)
- Unique solution:
  - 14 days pre-/post-quake
  - Combined solution
  - Global reference frame
  - Accuracy  $\pm 2 \text{ mm}$

Wednesday, February 16, 2005

- Input earthquake model



SEAMERGES:

130



## **Co-seismic displacements from GPS**

- Permanent GPS data:
  - Thailand (4)
  - Malaysia (36)
  - Indonesia (5)
  - Singapore (1)
  - Other countries (9)
  - Outside region (21)
- Unique solution:
  - 14 days pre-/post-quake
  - Combined solution
  - Global reference frame
  - Accuracy ± 2 mm
  - Input earthquake model







SEAMERGESE



# **Co-seismic displacements from GPS**

- Kinematic solution:
  - Position changes during day
  - Position update each 30 s
  - Accuracy ± 2 cm (horizontal)
  - Feasible for any GPS location
- Unique results:
  - At more than 40 locations
  - Changes up to 25 cm in 3 min
  - Start/end co-seismic motions
  - Low frequency quake signals
  - At distances over 2000 km
  - Input to earthquake model





SEAMERGESE

### **SEAMERGES: Post-seismic displacements from GPS**

- Daily solutions after earthquake:
  - Position changes per day
  - Compare with average before
  - Accuracy ± 5 mm (horizontal)
  - Follows co-seismic motion
- Unique results:
  - At more than 11 locations
  - Up to 4.5 cm in 2 weeks
  - At distances over 1500 km
  - Input to earthquake model



Wednesday, February 16, 2005



16/17

### SEAMERGESE **Additional GPS Measurements in S.E. Asia**

- GPS Campaigns urgently needed:
  - Indonesia and Thailand
  - Further densify displacement field
  - Post-seismic 'pollutes' co-seismic
  - Only at points measured before quake



GPS Campaign Thailand (10-15 February 2005)



Wednesday, February 16, 2005



17/17

#### SEAMERGES:

## **Conclusive Remarks**

- Sundaland motion and deformation was well defined before 26/12/04.
- The Mw 9.0 earthquake has generated significant deformation of Sundaland, on a scale never before seen with GPS (> 2000 km).
- A unique combined GPS solution for the region has been computed, which shows intriguing co- and post-seismic deformation patterns.
- The entire geodetic networks of Malaysia and Thailand are internally deformed up to 35 cm (on continue to deform).
- The presented GPS results will allow a better modelling of the earthquake mechanism, and it's future impact on the region.
- The SEAMERGES EU-ASEAN partners have responded quickly: A special (internal) scientific report on the earthquake/tsunami has prompted (external) partners to collect/provide and analyze valuable GPS data.

